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--------------------------------------------------------ABSTRACT---------------------------------------------------------------- 

This paper is a proposed deep learning application to do integrated petrophysical, pore pressure and 

geomechanics property prediction in unconventional hydrocarbon reservoirs. Simple modeling methodologies 

in use do not help much in capturing the non-linear multi-attribute interactions that were common in the 

subsurface conditions (particularly the complex formation in the Permian Basin). To give concurrent estimates 

of porosity, permeability, pore pressure, Youngs modulus and Poissons ratio, this paper creates a multi-output 

deep feed forward neural network that is trained on both well logs and seismic-derived properties. Large 

volumes of preprocessing, feature engineering, and optimization algorithms were used to improve the amount of 

accuracy and generalizability of models. It tests well on the results which proved to have excellent predictive 

performance when compared with the traditional deterministic models in terms of accuracy, time-efficient and 

scalability. SHAP and sensitivity analysis are techniques to interpret the model and prove any geological 

relevance of its predictions. Moreover, volumetric modeling made on the seismic data enabled the extension of 

the prediction beyond the wellbore-level to the full-field. The paper offers the possibilities of applying deep 

learning to transform the way of reservoir characterization, decrease turnaround time and enhance decision-

making associated with developing unconventional resources. 
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I. Introduction 
1.1 Background  

The advent of unconventional reservoirs including shale gas, tight oil, and coalbed methane uprooted the 

energy scenario in the last two decades tremendously. Low permeability, complicate mineralogy and geological 

heterogeneity are typical facts about unconventional reservoirs as compared to conventional hydrocarbon plays. 

Hydrocarbons in these reservoirs need vigorous stimulation activities that include hydraulic fracturing and 

horizontal drilling to open up commercial viability (King, 2020). The depth of operations has also shown a great 

surge in well development in various regions of the United States such as the Permian Basin, Eagle Ford, and 

Bakken formations with drilling activities going to new heights (EIA, 2023). 

With this heightened activity however there arises a rise in technical and analytical problems. 

Unconventional reservoirs are commonly characterized by complex stratigraphy, heterogeneous lithological 

characteristics, poorly predictable diagenetic modifications, and heterogenous stress situation making property 

foretelling in their submarine somewhat challenging (Zhang et al., 2022). Furthermore, the state of 

geomechanical behavior in these plays is quite sensitive to pore pressure, mineral composition, natural fractures, 

and the stress anisotropy, which can hardly be secured with conventional estimations (Chopra & Marfurt, 2021). 

The rich interrelation between the petrophysical characteristics (such as porosity, permeability, and saturation 

levels) of the rocks, the pore pressure and rock mechanics introduces further twists and turns in the challenges of 

managing oil reservoirs and developing wells. 

Historically, petrophysical and geomechanical characteristics have been estimated by a mixture of 

empirical correlations, deterministic rock physics models and the manual interpretation of wireline logs. 

Although these strategies have suited the industry over the past decades, they have some limitation especially 

when applied to the unconventional reservoirs. Interpretation of log data through Manual methods is both time-

consuming, subjective and inconsistent on large volumes of data or between fields. Furthermore, the common 

calibration of traditional rock physics theories is based on core measurements or parameters measured in the 

laboratory, but which are unlikely to reflect in-situ conditions in a correct manner (Mavko et al., 2020). 
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The inability of classical workflows to exhaustively extract the wealth and range of data that is currently 

availed in the subsurface studies of data (such as seismic inversion products, drilling logs, microseismic data, 

and mudlogging information) presents another huge bottleneck. Combining such multi-scaled data in the 

framework of deterministics might be a hassle, as it becomes impossible and infeasible in most instances 

(Elsayed & AlKharusi, 2022). In addition to this, in cases where many wells (hundreds or thousands of wells) 

are involved, turnaround time becomes a crucial issue. The modeling and calibration iterative approaches are 

merely not scalable, which is why it is close to impossible to make quick predictions required to carry out field 

development planning (Rashid et al., 2021). 

 

1.3 problem of the study  

Since the rise of subsurface data and inabilities of the traditional methods to analyze them, the 

implementation of new artificial intelligence (AI) and machine learning (ML) technologies in geosciences is 

even more alluring. Machine learning and especially deep learning has the potential to solve problems that need 

to examine high-dimensioned, complicated data sets, with low human contingency. It has the potential to 

discover the obscured patterns, non-linear relationship, and multi-attribute dependency that might not be easy to 

estimate with the conventional models (Abedi et al., 2023). 

Supervised deep learning traditions, i.e. artificial neural networks (ANNs), (convolutional neural 

networks (CNNs) and recurrent neural networks (RNNs) have been used to predict rock properties directly using 

log data with high accuracy and speed in petrophysical analysis. On the same note, increments of geomechanical 

parameters to include Young modulus, Poisson ratio, and fracture gradients have been obtained through AI 

applications that incorporate log-based, seismic derived, and drilling parameters (Jin et al., 2022). What is more, 

ML models can constantly learn new data, thus updating in real time and becoming more accurate in the future. 

 

1.2 Aim and objectives  

1.2.1 Aim 

This paper seeks to establish and operationalize an integrated deep learning model to realize simultaneous 

petrophysical, pore pressure, and geomechanical property prediction using well log and seismic-based data to 

facilitate a better understanding of reservoirs and better decision-making in the unconventional hydrocarbon 

play. 

 

1.2.2 Objectives 

1) To generate and preprocess an entire data set with well logs and seismic-derived qualities of the 

Permian Basin. 

2) To build and train a watched deep neural network that could represent multi-output regression 

decreasing porosity, permeability, pore pressure, Young modulus and Poisson ratio. 

3) Statistical performance analysis To calculate model accuracy and robustness with the help of statistical 

performance metrics and blind testing of wells. 

4) To implement regional extension of trained model to predict volumetric property based on the results 

of seismic inversion. 

5) To compare the deep learning method and the traditional modeling techniques and evaluate their 

scalability, interpretability and benefits in operation. 

 

II. Literature Review 
2.1 Review on the past studies application of ML in petrophysics 

With the increasing challenges of non-linear relationships and complicated patterns of your subsurface 

reservoir data, machine learning (ML) has come to be more forested into petrophysical analysis to maintain 

current trends. Deterministic models and empirical correlations are conventional methods that fail to perform 

well when handling multi- variate dependencies and heterogeneous formations. This has prompted scientists to 

resort to some sort of supervised learning model to enhance better estimates of important petrophysical 

properties such as porosity, water saturation, permeability, and volume of shale using modus operandi like 

Artificial Neural Networks (ANNs), Random Forests (RF) and Support Vector Machines (SVMs). 

As an example, Al-Anazi and Gates (2020) used Al-Anazi and Gates (2020) employed ANNs to 

forecast the permeability using conventional well logs and realized the enhanced predictive precision relative to 

conventional techniques. In the same way, Adhikary et al. (2021) are able to forecast total organic carbon (TOC) 

and lithofacies in unconventional shale reservoirs with high accuracy, exploiting ensemble ML methods. Their 

models worked sufficiently to picking up intricate non-linear trends that are largely overlooked with typical 

petrophysical interpretations. More recently, to automate the task of regression and petrophysical data 

classification based on well logs, emerging techniques like Convolutional Neural Networks (CNNs) and Deep 

Feedforward Neural Networks (DFNNs) have been used so far are deep learning methods (Bashari et al., 2022). 
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Furthermore, common application of machine learning has allowed the researchers to forecast 

petrophysical properties on a regional basis by uniting seismic characteristics and well log information. As 

another example, Panahi et al. (2023) used the seismic inversion results to show that this type of output in 

conjunction with supervised learning models could create volumetric porosity and net pay thickness 

distributions in offshore fields with very little core data. 

 

2.2 Use Of ML In Pore Pressure Forecasting And Geomechanics 

The methods that have been conventionally used to predict pore pressure as well as modeling 

geomechanics have been through empirical relationship, sonic interpretation of log and to some extent by core 

testing. Although these methods are fundamental, some of the drawbacks are poor geographical coverage and 

the reliance on expert opinion. The use of ML in this sphere can bring the opportunity to obtain pressure-related 

and mechanical properties more correctly and effectively. 

A number of studies have indicated success in the estimates of pore pressure based on log derived 

attributes by the use of ML techniques. As an illustration, Wang et al. (2021) used Gradient Boosted Trees 

(GBT) and LSTM networks to determine pore pressure using time-depth curves and sonic logs in deepwaters. 

They dramatically minimized estimating error and also provided real-time drilling wellbore pressure control in 

drilling. 

Tawfik et al. (2023) identified a method to predict the values of Young modulus and Poisson ratio 

based on seismic attributes, as well as well log data in the geomechanics field by creating a hybrid deep learning 

model. They were also of use to predict geomechanical properties within a poor well control zone. In a like 

manner, Jin et al. (2022) showed that combining drilling parameters and Wireline log data into a deep structured 

neural network could generate favorable estimates of breakdown pressure and fracture gradients, both of which 

are pertinent parameters in wellbore stability and well design during hydraulic fracturing. 

A second new trend is the rise of surrogate ML models eliminating computationally costly equational 

simulations in mechanical earth modeling. This enables engineers to quickly execute numerous geomechanical 

conditions and perform well positioning optimization that does not take a long turnaround time (Fakhry et al., 

2020). 

 

2.3 Research Gap and Is Innovative the Integrated Deep Learning Method 

Due to the advancements that have been made, mainly due to machine learning, on isolated sets of 

petrophysics, pore pressure and geomechanics, there is still so much more to do. The majority of current works 

concern domain-specific applications which is, models are usually trained on one property of interest (e.g. 

porosity or pressure) and the connections between different properties of a reservoir are often overlooked. Such 

closed system will constrain the model to generalize in different tasks, or to fully utilize the benefits of multi-

domain datasets. 

Furthermore, most predictive models are limited to small training data or calibration to a finite 

geographical area and are therefore hard to apply to new basin or formations. Hoping to combine different data 

types (e.g., seismic, wireline, and drilling data) into a single model, one cannot completely address the problem 

in practice at the moment (Elsayed & AlKharusi, 2022). 

The present paper proposes a new integrated deep learning system that is able to determine 

petrophysical, pore pressure and geomechanical properties in a single pass. The most important innovation is the 

fact that it: 

a) Integrate multi-source input (seismically based and well log), 

b) Acquire deep interdependencies among the subsurface domains, 

c) Minimize manual based calibration, 

d) Speed up the prediction timelines that are days/weeks to hours/minutes. 

 

III. Methodology 
3.1. Preprocessing of Data and Data Collection 

The diverse and representative data used to develop a strong and expandable deep learning system was 

derived and extracted using various sources in a chosen unconventional play (Permian Basin). The involved 

type of data includes the following: 

Well Log Data: It includes such conventional wireline logs as gamma ray (GR), density (RHOB), 

neutron porosity (NPHI), sonic travel time (DT), resistivity (RT), and caliper logs. These inputs are essential 

characteristics of estimating porosity, permeability, pore pressure, and properties of the mechanical traits, as 

well as, (Youngs modulus, Poisson ratio) (Mavko et al., 2020). 

Seismic-Derived Properties: The outputs of path-oriented seismic inversions, e.g. acoustic impedance, 

Vp/Vs ratio, seismic attributes (e.g. instantaneous frequency) were included. These data make the prediction 
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powers of the model not only limited to well locations but also permit the volumetric modeling in the regions 

(Panahi et al., 2023). 

 

3.1.2 Missing Data, Normalization and Labeling 

The preprocessing of real world geological data is rigorous because data is frequently lacking and 

noisy. As in the case of deeper or deviated wells, missing log values were imputed through a mix of linear 

interpolation and k-Nearest Neighbor (kNN) algorithms in order to maintain data relationship (Rashid et al., 

2021). 

 

3.2. Neural Networks Structure 

The planed deep learning model consists of a deep feed forward neural network (DNN) which has been 

chosen due to its adequacy in a regression problem in tabular data context with both well logs and seismic based 

features. The architecture will be able to deal with multi-output predictions of petrophysical, pressure and 

geomechanical properties at once. 

 

Layers and model Design 

Model includes the following: 

a. Input Layer: Takes any of the standardised features (e.g. GR, RHOB, DT, impedance, Vp/Vs etc.). 

b. Hidden Layers: Four hidden layers (all dense with 128, 64, 32 and 16 neurons respectively). 

c. Activation Functions: non-linear transformation with the activation functions set to ReLU (Rectified 

Linear Unit) will be utilized on all hidden layers. 

d. Dropout Layers: dropout layers are applied between dense layers at the rate of 0.2 in order to avoid 

overfitting (Srivastava et al., 2014). 

e. Output Layer: Multi output regression layer that makes continuous predictions of porosity, 

permeability, pore pressure, Young modulus and Poissons ratio. 

 

3.3. Training Virtual and Validation 

3.3.1 Split of data 

The data was divided to Training Set (70%): this is utilized in determining the parameters of the model. 

Validation Set (15%): It was used to watch over the performance of the model under training and to fine-tune 

the hyperparameters. Test Set (15%): a hold-out data to show how the model will generalize and perform at the 

end. Such stratified sampling allowed including various geological regions and formations in each split, 

eliminating data leakage and increasing the overall quality of generalizability. 

 

3.3.2 Optimisation of Hyper parameters 

Hyperparameters were best chosen with a grid search and Bayesian optimization scheme using, among others: 

i) Learning rate ( 0.001-0.01 ), 

ii) Batch size (32 128), 

iii) Layers (3- 6), 

iv) Layers, number of neurons: (32256), 

v) Drop out rates (0.1-0.5). 

Over fitting was avoided using regularization through L2 penalties and early stopping that was done according 

to the validation loss. 

 
Fig 1: Block diagram of the proposed neural network architecture. 
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Fig. 2: Data pipeline from raw logs/seismic to prediction output. 

 

3. 4. Case Study: Permian Basin 

3.4.1  Geological Setting 

WestTexas and the area of southeastern New Mexico, which is known as the Permian Basin, is one of 

the best studied hydrocarbon provinces in the whole world. Covering about 86 000 km 2, featuring a number of 

sub-basins, it is characterized by the Delaware Basin and the Midland Basin. Since the 1920s, the region has 

consistently produced considerable amounts of oil and gas, but its strategic significance has grown in the last 

decades with the occurrence of unprecedented drilling achievements like the horizontal drilling technology and 

hydraulic fracturing (EIA 2023). 

The geology of the basin consists of a stratigraphic stack of reservoirs on an array of formations, rim-

to-core, shallow carbonate and shale facies, to increasingly deep tight sandstones and siltstones. Under this 

model, the Wolfcamp, Bone Spring, Spraberry and Yeso intervals form the main unconventional target of the 

recent unconventional activities. The permeability of such reservoirs is low, and the concentrations of clay are 

high as well, and the lithological distributions are heterogeneous, presenting significant difficulties in relation to 

standardized reservoir modeling and characterization methods (Sharma et al 2022). 

Sedimentary basin tectonics and depositional environments have produced variable stress 

environments, anisotropic mechanical behavior and abrupt changes in lithology, which directly affect the design 

of the drilling and completion. Therefore, proper representation of subsurface properties, especially the porosity, 

pore pressure and rock mechanical variables, is vital in the optimisation of well performance and its risk 

reduction. 

 

Items entered in well well log include: 

a) Gamma Ray (GR): it is possible to differentiate between shale units and clean formations, and 

lithologic changes can be identified. 

b) Bulk density (RHOB): is critical in determining porosity and mechanical-property. 

c) Neutron porosity (NPHI): this is applied together with RHOB to determine effective porosity and 

identify zone with hydrocarbons. 

d) Sonic log (DT): the readings of the compressional and shear slowness were used to calculate Poisson 

ratio and elastic moduli. 

e) Resistivity logs (RT, LLD, LLS): they are a vital part of fluid-saturation and pore-pressure studies. 

f) Caliper and mud log: it provided borehole stability data and was able to correct interval of 

measurements on the well logs. 

 

Seismic based inputs include: 

a) Acoustic impedance (AI): derived on the basis of post-stack inversion and closely related with the 

lithology and fluid fill. 

b) Shear impedance (SI): it is helpful in describing the fracture, mechanical, and elastic anisotropy. 

c) Vp/Vs ratio: a delicate sign of lithology and pore fluid, of use in identification of the over-pressured 

intervals. 
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d) Instantaneous frequency, amplitude envelope and coherence: determined by attribute analysis to 

constrain structural and stratigraphic interpretation. 

e) Elimination of Poisson ratio and Young modulus: Seismic inversion data provided supplementary 

estimates of the parameter which was not available in the areas where direct well log measurements were not 

made. 

Incorporation of these data sources to the deep learning system allowed multi-dimensional analysis and 

development of regional property predictions, even in those areas having scarce well control. A uniform regime 

of log templates guaranteed consistent preprocessing and feature extraction, which is the first requirement of a 

successful model that will be generalized to many formations and wells. 

 

3.4.2 Application of the Deep Learning Model 

The current research offers a deep learning architecture that incorporates petrophysical, pore pressure 

and geomechanical variables through a single multilayered feedforward neural network (DNN). The system was 

trained on the multisource dataset assembled on the Midland sub-basin of the Permian region, allowing the 

framework to analyze well-log information alongside seismic enabled attributes so as to capture geological 

heterogeneity of the basin in a complex way. The accuracy of the metric result and the practical feasibility of the 

model were determined by comparing predictions and measured data based on well logs, core analysis and 

drilling tests, using all the standard validation metrics such as Root Mean Squared Error (RMSE), Mean 

Absolute Error (MAE) and coefficient of determination (R 2 ). The qualitative analysis was also performed by 

plotting outputs (predicted value cross-plotting and visual inspection of property logs across the several wells) 

on each property. 

 

IV. Results and Discussion 
4.1 Accuracy and Performance Metrics 

A heterogeneous dataset in deep-learning framework showed a robust predictive capability in all the three target 

domains- petrophysical, pore-pressure, and geomechanical properties- in test dataset. 

 

4.1 Performance Metrics : 
Property R² Score RMSE MAE 

Porosity (%) 0.93 ±2.1 % ±1.6 % 

Permeability (mD) 0.85 ±0.12 mD ±0.09 mD 

Pore Pressure (psi) 0.91 ±220 psi ±165 psi 

Young’s Modulus (GPa) 0.88 ±1.9 GPa ±1.4 GPa 

Poisson’s Ratio 0.90 ±0.03 ±0.02 

 

In the current study, the superior generalization ability of a newly formulated constitutive model is 

indicated through computing its prediction error compared to typical engineering tolerances. The strong R 2 

values that follow the rock-property variables in the form of porosity and pore pressure suggest the significant 

representation of complicated relations between the multisource input and subsurface properties of the same. 

 

4.2 Comparison with Conventional Methods 

To access the differential utility of deep-learning methodologies, three predictive tasks, namely, 

porosity and permeability estimation, pore-pressure estimation, and geomechanical property extraction were 

analyzed and compared to similar tasks performed using traditional, parameterized models, like Archie 

equation, core-log transforms, Eaton technique, and log-based geomechanical models. The findings therefore 

show that, in the case of porosity and permeability, deep-learning model repeatedly gave smaller margin of error 

and did not need any recalibration after training to fit heterogeneous sedimentary reservoir. In deep-learning 

model, they exclusively compared every depth against Eaton method in regards to pore-pressure estimation, 

which found that deep-learning model equally exceeded Eaton method in over-pressured intervals when seismic 

data is incorporated. Lastly, the geomechanical property prediction created 3 D volumes with resolutions that 

cannot be achieved by conventional log correlation methods which rely on empirical coefficients. When all 

these comparisons are taken into account, it results in a conclusion that deep-learning frameworks hold 

significant predictive potential over the conventional techniques of deterministic nature, in a wide array of 

reservoir properties. 
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Fig 3: Performance comparison of three machine learning models  (A) The porosity and permeability 

estimations provided by deep learning are more accurate than those provided using Archie-based transforms. 

Using deep learning as opposed to the method developed by Eaton, pore pressure profiles in the over-pressured 

zones are better aligned with the measured data. (C) The results of developed deep learning methodology of 

predicting the geomechanical properties provide high-resolution 3D volumes of the volume, which is beyond 

spatial constraints of typical methods of log correlation applied. 

 

4.3 Time Efficiency and Scalability 

One of the most significant advantages of the deep learning approach lies in its speed and scalability: 

Time Efficiency: Once trained, the model could predict properties for a full well log or a seismic section in 

under 5 minutes, compared to several days required for conventional modeling and cross-validation. 

Scalability: The use of seismic attributes allowed the model to generate property predictions in 3D volumes, 

making it applicable across entire fields, even in data-sparse regions with limited well control. 

These attributes are particularly valuable in fast-paced asset development and real-time decision-making 

scenarios, such as well placement, drilling optimization, and completion design. 

 

4.4 Interpretability and Explainability of the Model 

While deep learning models are often criticized as “black boxes,” several techniques were employed to improve 

interpretability and trust in this study: 

SHAP (SHapley Additive exPlanations): Used to quantify the impact of each input feature on model outputs. 

For example, bulk density, sonic slowness, and Vp/Vs had the highest influence on geomechanical property 

prediction. 

Feature Sensitivity Analysis: Confirmed that input perturbations resulted in reasonable and physically 

meaningful changes in predicted outputs. 

Cross-validation across unseen wells further validated that the model did not overfit localized geological 

patterns, enhancing its reliability for field-wide applications. 

These strategies not only improve user confidence but also help engineers validate whether the model is relying 

on geologically relevant inputs to make predictions. 
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Fig: 4 Interpretability and Explainability of the Model 

 

4.5 Limitations and Potential Biases 

Despite its strong performance, the model does have inherent limitations: 

Data Quality and Availability: The model's accuracy is highly dependent on the completeness and 

representativeness of training data. Wells with missing logs or noisy signals can introduce biases or reduce 

prediction reliability. 

Regional Specificity: Although trained on a diverse set of Permian wells, the model might not generalize well 

to other basins without retraining or transfer learning. 

Seismic Resolution Limits: Seismic-derived inputs are subject to vertical resolution limits, which may reduce 

the model’s precision in thin or interbedded zones. 

Uncertainty Quantification: While performance metrics provide statistical assurance, probabilistic 

uncertainty bounds were not explicitly modeled in this phase. Future iterations may integrate Bayesian deep 

learning for uncertainty calibration. 

Computational Resource Needs: Initial training requires substantial GPU-based computation, which may be a 

constraint for smaller operators or in offline environments. 

4.6 Volumetric Modeling from Seismic Attributes 

In the current study, the researchers present an incorporated deep-learning app that could go beyond short-

distance characterization of a reservoir to the wellbore and yield volumetric distribution of properties of the 

entire reservoir. By using seismic attributes information as inputs of models, using supervised learning process, 

the system is capable of producing high-resolution grids in a 3D way spreading across this interval of interest 

covering porosity, pore-pressure, and geomechanical variable. 
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Fig 5: Schematic of the steps involved in the inversion process 

 

4.6.1 Extension of the Model to Regional Volumetric Predictions 

The neural network was developed and calibrated on well log and the corresponding seismic attribute data, and 

once a trained version of the model was developed, the model was applied to the whole 3D seismic survey. 

Since seismic data offer continuous spatially extensive data, volumetric interpretation has been achievable on 

the scale of several thousand square kilometers. 

Regional model was populated by the following seismic attributes: 

• Acoustic impedance ( AI ) 

• Shear Impedance (SI) 

Ratios of vp/Vs 

Amplitude and frequency instantaneous 

• Poisson ratio and the Young modulus of the inversion of the seismic type 

These attributes were kissed into normalized values and taken into the trained network where each of them had 

predicted values (must be the same voxel) voxel by voxel across the three-dimensional grid. The resultant effect 

was a set of continuous property volumes, which were well data calibrated and known area validated. 

The approach enables the quick mapping of the reservoir heterogeneity, discovery of sweet spots, and building 

geomechanical earth models (GEMs), which are crucial in effective field development planning. 

 

V. Conclusion 
In conclusion, the suggested deep learning concept will serve as an effective, scalable, and efficient 

alternative to the traditional subsurface modeling workflow. The combined application of petrophysical, pore 

pressure and geomechanical regimes into a single combined predictive system, takes technical competency and 

the overall operational judgement in the acquisition of oil and gas exploration and production to levels 

previously never seen before. 

The current study proposes the use of one framework that can predict petrophysical, pore pressure, and 

the geomechanical properties simultaneously using the knowledge of well log data and seismically-derived 

attributes. The methodology provides a high rate of predictive accuracy, scale, and scope of operation, when 

applied to the Permian Basin, and it resolves the shortcomings of conventional subsurface modeling methods. 
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