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We study two delay-coupled Lorenz systems and demonstrate unified chaos control by noninvasive
timedelayed coupling. Both an unstable periodic orbit and an unstable fixed point of the system can
be stabilized close to a subcritical Hopf bifurcation. Using a multiple scales method, the systems are
reduced to Hopf normal forms, and an analytical approach for stabilizing a periodic orbit as well as a
fixed point of the system is developed. As a result, the equations for the characteristic exponents are
derived in an analytical form, revealing the range of coupling parameters for successful stabilization.
Finally, we illustrate the results with numerical simulations, which show good agreement with the
theory.
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L. INTRODUCTION

Time delayed feedback control (DFC), proposed by Pyragas [1], is a simple and convenient method to stabilize
unstable periodic orbits (UPOs) occurring in a single dynamical system. Since the DFC uses only the difference of
the current and the delayed state where the time delay is given by the period of the UPQO, the control is non-invasive
and is applicable to systems whose equations of motion are unknown. Due to this convenience, the algorithm of DFC
has been applied to quite diverse experimental systems and theoretical advances have also been made [2-6].

However, it was commonly believed that torsion-free UPOs or, more precisely, UPOs with an odd-number of real
Floquet multipliers larger than unity could not be stabilized by DFC [7, 8]. To overcome this limitation, the modified
control schemes, like a half-period delay [9] and the introduction of a unstable controller [10, 11] were proposed for
stabilizing UPOs of the Lorenz system that is a representative with the odd number limitation.

This alleged odd-number theorem has been refuted by a counter example, i.e., suberitical Hopf-normal form system
[12], and this refuting mechanism has been applied directly to UPOs created by subcritical Hopf bifurcations in Lorenz
system, higher-dimensional dynamical systems [13]. When the delay term is added, however, reducing Lorenz system
to the standard normal form via the center manifold theory is nontrivial task because the dynamics takes place in
an infinite-dimensional phase space [11]. In [14], we have shown that UPOs in the network of the suberitical Hopf
bifurcation systems can be stabilized in-phase synchronously by delayed coupling, which has been extended to network
of Lorenz systems by reduction using the method of multiple scale [15].

In parallel to the control of UPOs, the stabilization of unstable steady states (USSs) has become a field of increasing
interest. Although the field of controlling chaos deals mainly with the stabilization of UPOs, the problem of controlling
the system dynamics on USSs could be of practical importance in experimental situations where chaotic or periodic
oscillations cause degradation in performance. One of the methods to control an USS introduced by Pyragas et al.
uses the difference between the current state and a low-pass filtered version, in which an unstable degree of freedom in
the feedback loop of Lorenz system was added to overcome the topological limitation, similar to that of a time-delay
feedback controller [16, 17]. A DFC scheme in a diagonal coupling form, which was originally invented to control
UPOs, has been analytically investigated for the purpose of stabilizing the USS [18, 19]. For stronger couplings a
diffusively coupled limit cycle oscillators with time delay exhibit a coupling induced stabilization of an USS, that is,
amplitude death of the oscillations [20, 21].

In our previous study [22], we proposed a time-delayed coupling method which makes it possible to stabilize not
only UPO but also USS in two delay-coupled Hopf normal form systems as a result of conversion of stability. In
this paper, we extend this idea into Lorenz system as a representative of troublesome dynamical systems from the

viewpoint of controlling chaos as described above. We consider two delay-coupled Lorenz systems and develop a sys-
tematic analytical approach for delayed coupling control of dynamical systems close to a subcritical Hopf bifurcation.
Using the multiple scale method, the system is reduced to the normal form for Hopf bifurcation and equations for
the characteristic exponents are derived in an analytical form, which reveal the coupling parameters for successful
stabilization. As a result of this we can show that UPO and USS in Lorenz system can be stabilized by delay-coupling.
Finally, we illustrate the results with numerical simulations of Lorenz system close to a subcritical Hopf bifurcation.

The paper is organized as follows. In Sec. I we present our model and an outline of the stability diagram. Section
1T is devoted to reducing our model into a delay-coupled Hopf normal form systems using the method of multiple scale.
In Sec. IV, we derive analytical stability conditions and confirm its validity with the direct numerical simulations.
Finally, Sec. V, concludes the paper.
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II. A MODEL OF TWO DELAY-COUPLED LORENZ SYSTEMS

We consider the following model of two delay-coupled Lorenz systems:

%1 = F(x1;p) + kH (x2 — x3), (La)
%2 = F(x2;p2) — kH (x1 —X1,7), (1b)
where
oy —ox
Fxip)=| pr—y—a=z
Ty — bz

describes the Lorenz system with state vector x = (r,y,2) € R?® and the real parameters o, p and b. We select the
standard set of the parameter values, i.e., ¢ = 10, b = 8/3, and the bifurcation parameter p is assumed to vary. k
denotes the coupling strength, the 3 x 3 matrix H is the connectivity matrix that determines which components of
the vector x; enter the coupling, and x, , = x,(t — 7) with time delay 7.

It is well known [23, 24] that the original Lorenz equations with k = 0 demonstrate different dynamical regimes
on variation of the control parameter p, which are associated with the existence and stability of several equilibrium
states. In brief, the system dynamics can be characterized by three regimes. For 0 < p < 1, there exists the only
stable fixed point at the origin x = (0,0,0). For p > 1, the origin becomes a saddle and two additional symmetrical
stable fixed points x = x4 (p) = (£/b(p — 1), £/b(p — 1), p — 1) appear. For p > py = 24.7368, the steady states
become unstable through the suberitical Hopf bifurcation at p = pg. Just below this bifurcation point, for p = py +¢,
¢ < 0, there are two small unstable limit cycles X4 (f) surrounding the stable steady states x75. At the same values of
the parameter p there exists a strange attractor and thus the system is multistable depending on initial conditions,
i.e., the phase trajectory may either be attracted to the one of the steady states or exhibit a chaotic behavior on the
strange attractor. The periodic orbit exists for 13.926 < p < pp; at the lower boundary it collides with a fixed point
in a homoclinic bifureation.

In the following, the value of the bifurcation parameter for the xa-system which plays the role of controller is taken
by p2 > pn, and thus its fixed points become USSs. Whereas, the x;-system to be controlled might exhibit UPO
and USS according to the choice of parameter values of p; < py and py > py, respectively. Our aim is to stabilize
a UPO/USS of x;-system and a USS of x,-system all together in two delay-coupled Lorenz systems (1) by choosing
the proper delay-time and coupling strength.

III. REDUCING SYSTEMS TO NORMAL FORM

In this section, we transform the variables of the coupled system using the eigenvectors of the fixed point at the
bifurcation point as a basis for a new coordinate system. Then applying the method of multiple scales we eliminate
the decaying mode and obtain the normal form for oscillating modes with delayed-coupling.

A, Transforming the System Variables

First the origins of both phase space and bifurcation parameter are shifted to a fixed point, e.g., xj(p) = xj,
and Hopf bifurcation point pp by using the transformations x;(t) = x} + w;(t) and p; = pu + €, respectively, with
j=1,2. We rewrite Eq. (1) in the form

= AOu; + 6 AN u; + N(uy) + kHus, (2a)
iy = AOuy + e, AMuy + N(uy) — kH(uy —uy ), (2b)

where A®) is the Jacobian evaluated at the point (x;‘-(pH)), €;AW) is a small deviation due to the shift of the
parameter p; from the bifurcation point pgy, and N(u;) defines the nonlinear part. The Lorenz system yields the
following matrices:

—a o 0 00 0 0
A= 1 -1 —p |, AV =gl 00 -1 |, Nuw)=[ —wws |, (3)
p p —b 11 0 U152

where p = /b(pyr — 1), ¢ = \/b/(pr — 1)/2 and the approximation \/b(p — 1) — /b(pr — 1) = e/b/(py — 1)/2

was used.
Let @ be the matrix that transforms the matrix A into Jordan canonical form, i.e., the columns of the matrix ®

are the eigenvectors pi, p2, p3 of the matrix A9 corresponding to the eigenvalues vq, 72, 73, respectively. Solving
the eigenvalue problem for the matrix A(® we obtain three eigenvalues

Y1 =75 = dwp & 9.6241, v3 = —13.666 (4)
and the matrix ® = [p1 p2 pa] reads

0.268 +0.306¢  0.268 —0.306¢  0.863
$ = —0.027 + 0.5647 —0.027 — 0.5647 —0.316 | . (5)
0.7187 0.7187 —0.395
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Then, under the transformation u;(t) = ®v,(1) = 2731::1 Vim(t)pm Eq. (2) yields the eigenmode equations as
follows

Vi = Jvi 4+ e Avi + BV? 4 €105 Cv, (6a)
\'/2 = JVZ + EzAVz + BV% — Egkzc(vl — Vl_-,—), (Sb)

where J = ®71AO® = diag (7,,72,73), A = 1AW S, and C = &' H® are the 3 x 3 similarity matrices by & of
A, A®) and H, respectively. The notation Bv? = &~ N(®v;) can be regarded by product of the 3 x 6 matrix B

, . _ p2 2 (v v.v 2 o 2 \T :
and the column vector with 6(= P3) elements, v = (v}, vj1Vj2, Vi, Vj1Vj3, VjaVys, Vig)' . The coupling strength

in Egs. (6) was rescaled as k = ¢;k; in order that the influences of coupling terms are realized at the same order with
the bifurcation parameter term ¢; Av;.

Since a pair of eigenvalues are complex conjugate, i.e., 79 = 77, the corresponding eigenvectors are also complex
conjugate: ps = pj. Moreover, the amplitudes of the corresponding eigenmodes have to be complex conjugate,
Vjo = v}, in order to provide the real valued solution for u;(f). Therefore, it is enough to observe only one of the
two eigenmodes, e.g., Vj1.

In the following numerical simulations, we will use z-coupling with the connectivity matrix,

000
H=|oo0o0]. (7)
001

According to the expressions (3) and (7), the matrices 4, B and C' are given as follow as

0.0340.18¢ 0.049 4-0.005¢ 0.047 — 0.044

A= 0.049—-0.005¢ 0.03—0.18; 0.047 +0.0447 |, (8a)
0.042 — 0.048i 0.042 + 0.0484 —0.06
—0.26 + 0.25¢ 0.2540.31 0.0940.02i 0.074+0.6i —0.07+0.16i —0.21 —0.27i

B = 0.09 —0.02 0.25—0.31i —0.26 — 0.25¢ —0.07 —0.16:  0.07 —0.6: —0.21 +0.277 |, (8b)

0.15 + 0.05¢ 0.07 0.15—0.05:  0.27—0.18  0.27 +0.18¢ —0.07

0.4348 4 0.0459¢ 0.4348 4-0.0459i —0.239 — 0.02524

C' = 0.4348 — 0.0459i 0.4348 — 0.0459i —0.239 + 0.0252i | . (8c)

—0.2373 —0.2373 0.1304

B. Application of the multiple scales method

We now begin the task of simplifying Eq. (6), i.e., reducing the dimensionality and eliminating the nonlinearity in
the term Bv? as much as possible. For doing that, we apply an approximation, the method of multiple scales [25],
seeking an expansion of the form

3
vir =3 ihéu(To, Ty, Ta) + O(uh), (9a)
=1
3
Viz = Z#ITI;.!(TU,- T, Tz) + O(u*), (9b)
=1

where the time scales T} are defined by T; = p't and p is a small positive dimensionless parameter that is artificially
introduced to establish the different orders of magnitude. The results obtained are independent of this parameter, and
it is ultimately absorbed back into the solution, which is equivalent to setting it equal to unity in the final analysis.
In terms of the Tj, the time derivative becomes

d
EZDQ—F'U.D]_-F'U.QDQ-'—"' (10)
where D; = 9/8T;. Also, the parameter ¢ is ordered as ¢; = pzej, so that the influences of the nonlinear terms,
coupling terms and the bifurcation parameter term €;Av; are realized at the same order.

Substituting Egs. (9) and (10) into Egs. (6), and equating coefficients of like powers of p, we obtain the hierarchy
of equations.

O(p):
Dgfjl — iwofjl =0, (lla)
DDT?jl — 7351 =0 (11b)
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The nondecaying solution of Eqgs. (11) is

n = Wy(Ty, Ty)e™oTo, (12a)
11 = 0, (12h)
where W; is determined by imposing the solvability conditions at the next levels of approximation.
o(p?):
Dotjz —iwabje = binél + bianél + bisél — D1, (13a)
Donyz — a2 = 17315321 +bs2bnéy + 13335;12 (13b)

Substituting Eqs. (12) into Eqgs. (13) and eliminating the source of secular terms, we have Dy W; = 0 or W; = W;(T3).
Then, the solutions of Eqs. (13) are

b W2ePTo by WWE by WiZe oo

= 14
2 iwo 1wy 3iwg ( a)
by W22 po W WF by Wi2e—2iwoTo
g = — | — EMELE B L S (14b)
Va3 — 2Ziwg 73 Y3 + 2iwg

where the general solutions of the homogeneous equations of (13) were omitted since they have no influence on the
source of secular terms in the next level.

O(p?):
Doéiz — iwnbiz = €y (anéin + a126l1) + 2buénéin + bi2(En1&ls + E1&12) + 2013601 €5 + brabiima (15a)
+his€Tme — Dabin +erki(ennéar + €12631),
Dobas — iwnéas = e5(a11€a1 + a12851) + 2b11801890 + b1o(€21855 + £31E02) + 201385, 655 + b1alo17j20 (13h)

+b15E8 122 — Dadar + ehks [er1 (€117 — E11) + 12 (&1, — &R

where 117 = & (To — 7, Th — pr, To — p27).
Substituting Egs. (14) into Eq. (15) and eliminating the terms that produce secular terms, we obtain equations for
the slowly varying amplitude

aw,

o (eha+ bWy "YWy + €, ky Wy, (16a)
2
dWV: _ i ,
d—T; = (eha + b [Wo )Wy + € koe(W7 2, — W), (16b)
where W, 2, = e” 0T W, (Te — 17) and the complex parameters are given as follow:
here W1, WOt (T z d th 1 foll
a=ai, (17a)
_d . 2. buabsa  bisbsr
b= o (bribiz — biaby, — 3b13b13) T s —2iwy (17b)
c=cp. 17¢c
(17¢)

Multiplying Eq. (16) with 70 and setting g = 1, we finally arrive at two delay-coupled Hopf bifurcation systems
as follow as
Zy = (M +iwy + (b +ib) | Z]* ) Z, + K€ Zy, (18a)
Zy = (Mo +iwz + (bp +iby) | 22" ) Zo — KeP(Z) — Z1.7) (18b)
where 7;(t) = e™“°'W,(t), \j = €;ar, wj = wo + €;a1, ap = Re(a), af = Im(a), bg = Re(b), by = Im(h), B = arg(c)
and K = klc|.
The parameters a, b, ¢ and wy determine, in whole, the coupled system (18) of Hopf-normal forms. According to
Eqs. (8) and (17), the values of the parameters are given as follow as

ap = 0.03022, (19a)
ar = 0.18145, (19b)
br = 0.00256, (19¢)
by = —0.02765, (194)
le| = 0.4372, (19€)
3 =0.105244, (19f)
wo = 9.624, (19g)

which are used for the numerical simulations in the following section.

For br > 0, Egs. (18) without coupling (K = 0) describe the normal forms for subcritical Hopf bifurcation with
bifurcation parameter };, i.e., ;. UPOs with radius rj = \/—X;/bgr and period T; = 27/Q; = 2r/(w; — Ajbr/br)
exist for A; < 0. The FEs of the UPO are determined by Ag' = —2);. For A; > 0, clearly, there is no limit cycle, and
the origin Z; = 0 is USS with the characteristic exponents A; + iw;.
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IV. LINEAR STABILITY ANALYSIS

In this section, we analyze Eqs. (18) and demonstrate stabilization of both an UPO and an USS by using the
delayed coupling. In the previous study [22], we analyzed Egs. (18) approximately in case that both the phase shift
by and the coupling phase (3 are zero, of which the approach is no longer available for the present non-zero case.

The reduced system (18) in the Hopf normal form admits an analytical treatment to derive the equation for the
FEs and the stability conditions. In addition, the numerical analysis of the original system of nonlinear differential-
difference Eqs. (1) is performed to confirm the analytical results. The bifurcation parameter of xa-system is fixed by
pa > py, Le., eg > 0, while the x;-system takes the parameter value either at p; < py or p; > py when stabilizing a
UPO or a USS is considered, respectively.

A. Stabilization of UPO and USS for p1 < py and p2 > pu

First, consider stabilization of UPO in the reduced system Egs. (18) with A; < 0 and Ay > 0. The time delay 7 is
chosen to be equal to the period of UPO, which allows for noninvasive control of the dynamical systems.

Calculating the Floquet exponents (FEs) A of UPO is not straightforward sinece Eqgs. (18a) and (18b) should be
linearized around a UPO and a USS, respectively. Introducing the real amplitude r; and phase ¢1 by Z1(f) =
r1(t)e¥1 (1) we obtain the following equations:

71 = (A + brri)r + KRe(e'F¥1) Z,), (20a)
K m

@1 =wy + by + —Im(e"’(‘j’ﬁ?‘)ZQ), (20b)
1

Fo = (As +iwa)Zo + Keiﬂ(rlei‘“ — e, (20c)

where the cubic term of Zs was neglected since we confine ourselves to the behavior close to the USS.
Using the ansatz r1(t) = r7(1 + dr1(t)), w1(t) = Quit + dp1(t) and Za = 0 + ridzz, expanding Eqgs. (20) to linear
order in the small deviations dry, dp; and 4z, around the periodic orbit, we obtain

oty = AJor, + KRe(e'P~%152,), (21a)
8p1 = 2byridry + KIm(e' B0 52, (21b)
820 = (Mg + two)dza + Keltf+n [6r1, —0r1 +i(8p1 - — 1)), (21c)
where A) = A, + 3bgr2 = —2)\; is the FE for UPO of the decoupled free system, and the expression dz; =

PI(1 4 §rp)el(ttops) _ preithit — preiit (5 1 jdp;) was used.
Using transformation of Za(t) to corotating complex coordinates (1) = !®~10 7, Eq. (21¢) reads

8¢ = (A2 +1AD)IC + Ke*P[6r1 7 — dr1 +i(8p1r — 6p1)],

which can be rewritten in terms of real valued coordinates 8¢ = §(r + id(s as follows as:

SR [ X —AD 8Cr ), g cos2B —sin2p Sry. — b1y (22)
8¢ ) T \Aw A 8 sin23 cos2f dp1 - —0p )7
where Aw = ws — 2 = Aw — brr*? with Aw = we — wy.
Since the coefficient matrices of Egs. (21a), (21b) and (22) do not depend on time, the FEs of the periodic orbit
are simply given by the eigenvalues A of the characteristic equation

AY — A 0 K 0
2brr}? —A 0 K
Kye(A) —Kxs(A) do—A —Aw
Kxo(A)  Kxe(A) A A —A

=0, (23)

where xc(A) = (e — 1) cos (283), xs(A) = (e — 1)sin (23). Clearly, the characteristic equation admits the solution
A = 0, which corresponds to the trivial Floquet mode of UPO with Floquet multiplier 1. In the absence of the
coupling, K = 0, Eq. (23) yields the quartic equation

AA =AY [(A = A2)% + Az®] = 0.

If we assume the diagonal coupling, 5 = 0, and A@ = 0, then the characteristic equation (23) factorizes:

[A(A o)+ K31 e*AT)] [(A CAYY(A - Ao) + K21 e*AT)} —o. (24)

In order to appreciate the behavior of the roots at a rough estimate, we briefly reduce Eq. (24) to a polynomial
equation using an approximation e=*7 a2 1 — A7 for small |A|r as follows as

AA+E—=2)[A? 4+ (k=AY — M)A+ ATN:] =0, (25)

where k£ = K?7. The roots of the second and third factors give the nontrivial FEs, of which the former crosses into
the left half plane at kK = k1 = A2 and the latters show the loci as considered in [16]: For £ = 0, the FEs are A$ and
A2. With the increase of %, they approach each other on the real axis, then collide at £ = AY + Ay — 21/1\?/\2 and
form a complex conjugate pair in the complex plane. At s = k2 = A 4+ A2, they cross symmetrically into the left
half plane (inverse Hopf bifurcation). Taking into account ks > ki due to A% = —2X; > 0, the dominant FEs are
determined by quadratic equation,

A2+ (k=AY = X)A + AT =0, (26)
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FIG. 1: (Color online) Real parts of leading Floquet exponents A of UPO in delay-coupled Lorenz systems as a function
of coupling strength k. The dashed (red) and solid (blue) lines denote the solutions of the polynomial Eq. (25) and the
transcendental Eq. (23), respectively. Dots correspond to Re A obtained from the exact variational Eqs. (27). Parameters are
given by p; = 24.144 (i.e., Ay = —0.01792), py = 27 (i.e., Ay = 0.0684), 7 = 0.674, and Egs. (7) and (19).

which provides the mechanism of stabilization of UPO and yields the stability condition K27 > —2X; + Ay.
However, such qualitative estimations using the polynomial approximation should be confirmed through the solu-
tions of the transcendental equation Eq. (23) and, more correctly, through the numerical calculation of the variational
equations of the exact systems Eqgs. (1).
Next, we determine the exact FEs by linearization of Egs. (1) around UPO for p; < py and py > ppy:

0%, = Ay (t)6xy + kHéx,, (27a)
05)‘(2 = jza‘Xz — kH (5X1 — (5)(1,7) s (27]’))

where Ay () = DF(%,(t); p1) and Ay = DeF(x3; p2). DyF denotes the matrix of first partial derivatives of F with
respect to the vector arguments, Here A, (¢) that is taken on UPO, [, (t), g1 (t), 21 (8)] = [, (t+7), gy (L+7), 21 (E+7)],
is 7-period 3 x 3 matrix and dx = (dx;, dxs) denotes small deviation from the periodic orbit X(t) = (%X;(t), x3) which
satisfies the decoupled system.

The FEs of the exact variational Eq. (27) have been calculated by the algorithm described in [26] as follow as.

According to the Floquet theory, solutions of Eq. (27) can be decomposed into eigenfunctions
ix = Mwl(t), w(t) = w(t 4 1),
and the delay term can be eliminated, §x(t —7) = e“*7§x(t). The characteristic equation for the FEs reads
det {U(A,7) — exp (A1)} =0, (28)
where I is the 6 x 6 identity and matrix W(A,¢) is the fundamental matrix of Eq. (27) that is defined by the equalities

T(A, 1) = [A(t) + GA)]T(A, 1), T(A,0) =T

with A(t) = ( Alo(t) }1) ) and G(A) = ( (E,ATO 1) é ) ® H. Here 0 is the 3 x 3 null matrix and @ is the direct
) —

product.

In Figure 1, we compare the real parts of the FEs A as a function of the coupling gain k, which were determined
by three different methods, namely, (i) using the solutions of the quadratic equation (25) in dashed (red) line, (ii)
by solving the transcendental equation (23) in solid (blue) line, and (iii) by solving Eq. (28) for the exact FEs of the
system (1) in the black dots. Indeed, we see that there exists an interval of coupling gain k for which the real parts
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FIG. 2: Dynamics of (a) variable x1, (b) variable z2, and (c) the delayed coupling perturbation k[z1 — z1 (¢t — 7)]. The coupling
control with k = 2.5 is switched on ¢t = 60. The values of the parameters are p; = 24.144, ps = 27 and 7 = 0.674, and the
connectivity matrix H is given by Eq. (7).

of A are all negative, so that both an UPO of Eq. (18a) and an USS of Eq. (18b) become stable. The parameters are
given by p; = 24.144 (i.e., Ay = —=0.01792), ps = 27 (i.e., Ag = 0.0684), 7 = 0.674, and Eqgs. (7) and (19).

To verify the validity of the linear stability analysis, we have numerically investigated the original system Eqs. (1).
The results of direct numerical integration of Eqgs. (1) with z-coupling given by Eq. (7) are presented in Figure 2.
Without the coupling (k = 0), two Lorenz systems demonstrate chaotic behaviors on the strange attractor. When
the coupling perturbation of k = 2.5 is applied at t = 60, the x;-system and approaches an UPO, while the xo-
system converges into an USS (Figure 2(a) and (b)). After a transient process, the coupling perturbation vanishes
(Figure 2(c)) and thus our delay-coupling method allows for noninvasive control of UPO. It was observed in numerical
simulations that the basin of attraction for stabilizing the UPO and USS include the whole area of the phase space
in contrast to the situation of Hopf normal form system [22] and Lorenz system with unstable controller [11], which
comes from the properties of strange attractor of two chaotic systems.

B. Stabilization of two USSs for p; > py and ps > py

We now consider the problem for stabilizing USSs. First, the linear stability of USS of the reduced system (18) is
analyzed. We linearize Eqs. (18) around Z; = Zs = 0 to obtain the characteristic equation for the eigenvalue A

det{Aq(A) — AT} =0, (29)
where the linearized matrix Ao is given by Ag(A) = K)\ElJr 1[:1_,\7) A ‘im , I is the 2 x 2 identity matrix and
- 2

Kz = Ke'B. The bifurcation parameters A, and Ay are positive and the delay time is chosen as 7 = 27/@ with
W= (Ld]_ + Lu'g)/QA

The matrix Ag(A) remains invariant under the transformation A+ A 4 i(w; +ws)/2 due to €7 = 1, and Eq. (29)
can be rewritten in the form

(A =M +iAw/2)(A = do —iAw/2) + K3(1 —e™"7) = 0. (30)
(Note that the stability is determined only by the real part of A.) This is a transcendental equation having an infinite

number of roots and we are interested in the movement of the eigenvalues from the right half-plane for K = 0 into

the left for a nonzero value of K.
Now, for a rough estimate, we again use an approximation e ™7 = 1— A7 for |A|r < 1. Furthermore, if the diagonal
coupling, 8 = 0, is assumed, then Eq. (30) is reduced, for wy = wq or A; = Ag, to a simple quadratic equation with
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FIG. 3: (Color online) Real parts of the eigenvalues A of USSs in delay-coupled Lorenz systems as a function of coupling
strength k. The dashed (red) and solid (blue) lines denote the solutions of the polynomial Eq. (31) and the transcendental
Eq. (29), respectively. Dots correspond to Re A obtained from the exact characteristic Eqgs. (33). Parameters are given by
p1 =30 (i.e., Ay = 0.159 and w; = 10.035), p2 = 27 (i.e., A2 = 0.068 and wo = 10.579), 7 = 0.61, and Egs. (7) and (19).

the real coefficients as follows as
A2+(K7/\17/\-2)A+/\1)\2:O, (31)

where k = K27. Note that Eq. (31) coincides with Eq. (26) and yields the stability condition K27 > A1 + Az, This
means that stabilization of USS could also be explained with the same mechanism as the case of UPO, and the
stability condition of USS reads K27 > A, + As.

Next, we determine the exact eigenvalues A of the fixed points (x},x3) by linearization of Eqgs. (1) for py.ps > ppy:

55{1 = 1311(5)(1 + kHéXQ: (323.)
5)‘(2 = AQ&XZ — kH ((5X1 — (5}(1!1—) N (32}))

which yield the characteristic equation as follow as
det {A(A) — ALz} =0, (33)

where 4, = Dy F(x7:p1), Ay = Dy F(x5; p2), E(A) = (E,,ATA: 1)kH ‘gj , and I is the 6 x 6 identity matrix.

Figure 3 shows the real parts of the eigenvalues A as a function of the coupling gain k, which were determined
by different characteristic equations: The dashed line (red), solid line (blue) and dots (black) correspond to the
eigenvalues obtained from the quadratic polynomial Eq. (31), the reduced transcendental Eq. (29) and the exact
transcendental Eqgs. (33), respectively. There exists an interval of coupling gain K for which the largest real parts
of A are negative, so that two USSs become stable. The parameters are given by p; = 30 (i.e,, A; = 0.159 and
wy = 10.035), pa = 27 (i.e., A2 = 0.068 and wo = 10.579), 7 = 0.61, and Eqs. (7) and (19).

Direct integration of the original system (1) with the above parameter values also confirms the results of linear
analysis (Figure 4). Initially the decoupled system (k = 0) is in a chaotic regime, and the two USSs are stabilized when
the coupling of k = 2.5 is switched on at t = 40 (Figure 2(a) and (b)). As seen from Figure 2(c), the perturbation
vanishes as the stabilization of the USSs is attained. Therefore, our delay-coupling method allows for noninvasive
control of dynamical systems. Note that the numerical simulations have revealed global characteristic of the basin of
attraction for stabilizing the USSs, which is in contrast to the situation of Hopf normal form system [22].
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FIG. 4: Dynamics of (a) variable x1, (b) variable z:2, and (c¢) the delayed coupling perturbation k[z; — z1(t — 7)]. The coupling
control with k = 2.5 is switched on £ = 40. The values of the parameters are p; = 24.144, py = 27 and 7 = 0.61, and the

connectivity matrix H is given by Eq. (7).
V. CONCLUSIONS

We have demonstrated a unified control method for stabilizing both a periodic orbit and a fixed point of the Lorenz
system close to a suberitical Hopf bifurcation by noninvasive delayed coupling of two systems. We have developed
systematic analytical approaches for reducing the system into Hopf normal forms and for stabilizing a periodic orbit
and a fixed point using the multiple scales method and linear stability analysis. As a result the characteristic equations
for Floquet exponents of the UPO and for eigenvalues of the USS have been derived in analytical form, which reveal
the coupling parameters for successful stabilization.

To verify the validity of the linear stability analysis, we have performed numerical simulations of the original system,
which show good agreement with the theory, i.e., the time-delay coupling method is capable of stabilizing not only
UPOs but USSs as well in the Lorenz systems for a wide interval of the coupling strength. In particular, two Lorenz
systems with this coupling exhibit a global basin of attraction for stabilizing an UPO and an USS at the same time
due to the nature of the strange attractor, which is in striking contrast to the situation of the delay-coupled Hopf
normal form systems [22] and Lorenz system with unstable controller [11].
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