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--------------------------------------------------------ABSTRACT---------------------------------------------------------------- 

In this paper, two different system architectures—cloud-based processing and local inference using TinyML—

for image-based anomaly detection using the ESP32-CAM microcontroller are investigated and contrasted. 

Images taken by the ESP32-CAM were sent to a local server in the cloud-based configuration, where anomaly 

identification was carried out externally. On the other hand, the edge-based method allowed for on-device 

image categorization without the need for network access by training a MobileNetV2 model straight onto the 

ESP32-CAM utilizing the Edge Impulse platform. This study's dataset, which included both typical and unusual 

scenarios, was especially produced with the ESP32-CAM in real-world indoor lighting circumstances. The 

cloud-based approach obtained an accuracy of 87 percent, according to experimental results, whereas the 

TinyML-based local classification produced a greater accuracy of 92 percent. The trained model was 

appropriate for deployment on the limited ESP32-CAM hardware because of its memory footprint, which was 

about 512 kB. Overall, the results show that TinyML offers a practical and effective substitute for cloud 

computing, especially in situations where latency or bandwidth are constraints. For anomaly detection 

applications, the findings imply that on-device intelligence can improve embedded AI systems' responsiveness 

and dependability.  

KEYWORDS; TinyML, Edge Impulse,Esp32,Embedded Systems 

----------------------------------------------------------------------------------------------------------------------------- ---------- 

Date of Submission: 08-11-2025                                                                             Date of acceptance: 19-11-2025 

----------------------------------------------------------------------------------------------------------------------------- ---------- 

 

I. INTRODUCTION 

For many years, the traditional control system worked well in highly regulated, local environments. 

However, as industrial monitoring and manufacturing systems have grown increasingly dispersed, the 

limitations of traditional control have become apparent. Because data-intensive applications—like vibration 

analysis and real-time picture processing—are more susceptible to latency, bandwidth limitations, and outside 

noise, there has been an increase in interest in cloud-based solutions that leverage centralized data processing 

and scalable computing. The cloud is not a panacea, though, as it has a number of disadvantages of its own, such 

as latency, privacy concerns, higher energy usage, and the need for constant Internet connectivity, which can be 

unachievable in industrial settings where dependability and real-time decision-making are essential. One 

significant advancement in this field is Tiny Machine Learning (TinyML), which enables machine learning 

models to be operated on low-power microcontrollers with minuscule amounts of memory, usually less than 

1MB. Edge computing, or processing data at its source, is the answer, as it lessens dependency on the cloud. For 

example, a TinyML model integrated into a device can analyze machine sounds or vibrations on-site and raise 

alerts of potential failures without sending sensitive data to the cloud. This makes TinyML ideal for Industrial 

IoT, predictive maintenance, and real-time anomaly detection, as it combines the benefits of edge computing 

and ultra-low power consumption. This paper explores the challenges and future directions of TinyML in 

industrial automation while comparing the performance of TinyML-based intelligent systems with traditional 

and cloud-only solutions in terms of scalability, energy efficiency, latency, and privacy. It also discusses 

practical applications in quality control and predictive maintenance. This study illustrates TinyML's promise as 

an affordable, privacy-preserving, and sustainable solution for the upcoming generation of industrial systems by 

contrasting it with traditional methods.  

 

II. MATERIAL AND METHOD 

TinyML has been the subject of numerous papers. In their paper, Saha et al. conducted a survey on 

TinyML, covering hardware requirements, software tools, resource efficiency of previous works, and system 

optimization techniques. They also introduced artificial neural networks, decision trees, support vector 

machines, deep learning algorithms like CNNs and LSTMs, and applications with typical examples. These 

machine learning techniques are frequently used for on-device inference on microcontrollers. To lower memory 
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requirements, they proposed a number of model optimization strategies, including quantization, weight pruning, 

knowledge distillation, and weight reuse. They also highlighted the possibility of AutoML in conjunction with 

TinyML in the future. In their evaluation of previous research on TinyML [1], Abadade et al. talked about the 

benefits of TinyML, including its quick response time, offline capabilities, superior privacy and security when 

compared to other AI-enabled systems, low energy usage, and affordability. Limited hardware can be used to 

decrease the cost of TinyML applications while sacrificing accuracy to within acceptable limits [2]. Tolani et al. 

tried to solve two important issues in traffic management, congestion and delay, using a machine learning-based 

system rather than traditional approaches, and they replaced fixed-schedule traffic lights in high-density urban 

areas with a dynamic traffic control system based on traffic conditions. They programmed the Arduino BLE 33 

Sense board using Edge Impulse Studio and trained it with 18 input features on 7 traffic classes, and the authors 

reported an accuracy of 97.86% in 1,700 epochs, and they showed that the performance of TinyML is better 

than Random Forest, Logistic Regression, k-Nearest Neighbors, and Decision Trees, and recommended TinyML 

[3]. Gookyi et al. used machine learning to detect disease in tomato leaves, and the edge-deployed software was 

Edge Impulse, and the edge hardware was the Nvidia Jetson Nano, and three models were evaluated on the 6 

classes: CNN, transfer learning model, and custom lightweight CNN with less parameters, and the authors found 

that they were able to differentiate between healthy and diseased leaves with an accuracy of more than 90% [4]. 

 

Venkataswamy et al. tried to develop an AI-based humanoid doctor system, and like IoT-based 

healthcare, they proposed measuring the parameters from the edge devices and evaluating them with patient 

complaints using ChatGPT in order to increase the accuracy of diagnosis [5]. Kamaruddin et al. demonstrated 

that defective integrated chips can be detected by combining the ESP32-CAM module with machine learning, 

and they reported a 99.4% accuracy of faulty chip detection using Edge Impulse and MobileNetV2[6]. Mellit et 

al. proposed a cost-effective hardware solution to detect faults in solar panels, and the authors used infrared 

cameras combined with an STM32 Nucleo-64 board and a CNN model deployed via the Edge Impulse platform 

[7]. Okoronkwo et al. developed a waste management system that classifies trash based on camera images 

processed on the Arduino Nano 33 BLE Sense, and one of the advantages of the proposed system is on-device 

inference, which does not require internet connectivity, and the authors used the FOMO model in Edge Impulse 

Studio to train the model, which resulted in an accuracy of 96.2% [8]. 

 

Hawsawi and Zohdy used a Neural Network Regression model deployed with Edge Impulse and 

reported a system accuracy of 96.6% in their paper using an STM32-based microcontroller [9]. Arthur et al. 

compared TensorFlow and Edge Impulse for the diagnosis of corn leaf diseases on an Arduino Nano 33, and 

they showed that TensorFlow achieves higher accuracy, while Edge Impulse performs better on hardware, and 

the authors suggested a hybrid approach [10]. Gui examined various CNN architectures for static hand posture 

recognition, particularly for deaf and hard-of-hearing users, and the authors used the Sébastien Marcel Static 

Hand Posture Database, MobileNetV2, MobileNetV1, and custom models, and they found that custom 

architectures perform better under resource constraints due to minimal flash usage [11]. Rao and Majid designed 

a low-cost real-time monitoring system for poultry health using the ESP32-CAM, and they applied the FOMO 

model using Edge Impulse and visualized the data on ThingSpeak [12]. 

 

Manjula et al. proposed a system for rapid detection and warning of speed bumps that are detrimental 

to traffic safety, and they employed the Arduino Nano 33, Edge Impulse Studio, and Google Colab, and selected 

a CNN-LSTM model [13]. Patil et al. employed the ESP32 to classify the language in audio samples, and the 

authors used the Mozilla open-source Common Voice dataset for eight languages, and concluded that 

frequency-coefficient-based features were effective [14]. Zekovic examined the performance of machine 

learning models on the Raspberry Pi as an edge device by comparing MobileNetV2, EfficientNet, YOLO, and 

SSD, and the author suggested EfficientNet due to its 94.5% accuracy and low computational requirements in 

comparison with YOLO and SSD [15]. Kurniawan et al. designed a portable, low-power, real-time IoT system 

for fall detection in the elderly, and the authors used the Edge Impulse platform with a feedforward neural 

network to classify activities such as walking, sitting, and running, and reported a perfect accuracy of fall 

detection [16]. 

 

Goswami and Saxena developed a TinyML model for the classification of bird species by recognizing 

and classifying bird calls, and the authors modeled audio sampled at 16 kHz in Edge Impulse Studio and 

deployed it on the Arduino Nano 33 BLE Sense, and reported an average accuracy of 92.6% [17]. Kulkarni et al. 

implemented a ResNet50-based model on the ESP32-CAM for tomato classification using Edge Impulse, and 

the authors classify tomatoes in three categories: ripe, unripe, or damaged, and report an accuracy of 94% [18]. 

Many of the papers do not use the ESP32 to process data on the edge, but instead in the cloud, and in one of the 

studies, the widely used MVTec dataset was used, and the training dataset included 300 screw images: 250 
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normal and 50 anomalous due to different deformations on the screws [19].Some of the studies on anomaly 

detection using ESP32 are shown in Table 1. 

 
Stage Model Input Size Size Accuracy AUC Notes 

Baseline 
(Random) 

MobileNetV1 
(Edge 

Impulse) 

96x96 ~1500 KB ~50% 0.50 Predicts all as anomaly, 
and random results are 

not accurate, because 

this model does not learn 
from the data, therefore 

it is not useful for 
making predictions, thus 

it is considered a 

baseline model. 

Optimized CNN 
(ultra-simple) 

Custom CNN 64x64 32 KB 50% 0.50 Very light, and did not 
learn, because it is a 

simple model, so it does 

not have the capacity to 
learn from the data, 

therefore it is not 

effective, thus it is not a 
good choice for this task. 

CNN with 

Augmentation 

Custom CNN 

+ Augment 

64x64 32 KB 62% 0.63 Partially successful, and 

the results are better than 
the previous models, 

because the 

augmentation technique 
helps to increase the size 

of the dataset, thus the 

model can learn more 
from the data, therefore 

it is a good choice for 

this task. 

Transfer 
Learning 

(Frozen) 

MobileNetV2 
(Frozen) 

96x96 ~2 MB 87% >0.75 Successful, and the 
results are good, because 

the transfer learning 

technique helps to 
leverage the knowledge 

from a pre-trained 
model, thus the model 

can learn from the data 

more effectively, 
therefore it is a good 

choice for this task, and 

the frozen model is a 
good starting point. 

Transfer 

Learning (Fine-

tuned) 

MobileNetV2 

(Unfrozen) 

96x96 ~2 MB 89% 0.73 Results are good, and the 

fine-tuning process helps 

to improve the 
performance of the 

model, because the 

model can learn from the 
data more effectively, 

thus it is a good choice 

for this task, and the 
results are better than the 

frozen model, therefore 

it is a good option to 
consider. 

Table 1 ESP32-Based Anomaly Detection Performance Based on Model Architecture 

 

An ESP32 running real-time anomaly detection on-device serves as the foundation for this work's edge 

computing architecture. It was selected due to its affordability, portability, and widespread use in industrial IoT. 

A quantized int8 model from Edge Impulse is loaded onto the ESP32's internal processor, and the device 

employs the ESP32-CAM module, which has an OV2640 image sensor with a resolution of up to 1600×1200, 

adequate for lightweight single-device image processing. The results are served in real-time through a built-in 

web interface on the local network, which can be accessed via the device's IP address or the ESP32's embedded 

web server that exposes a control panel at http://esp32.local. The ESP32-CAM captures frames, preprocesses 

them for anomaly detection, and classifies them locally. Any computer or phone connected to the same Wi-Fi 

network can access the web interface, which provides the following features: A low-resolution live preview is 

optional. The final detection output includes the timestamp and latency metrics for capture, preprocessing, 
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inference, and total time, as well as basic logging and settings like threshold, frames per second, JPEG quality, 

and resolution. It also includes normal or anomaly with a confidence measure. An external TFT/LCD monitor is 

not required because the results are viewed and recorded within the browser, and the serial connection is solely 

utilized for development and initial network setup. The ESP32-CAM connects to the local network and serves 

the user interface (UI) from its internal web server, which is used for model loading, parameter tuning, and 

testing. The application is written using the Arduino IDE, which makes use of the camera driver, Wi-Fi, and 

asynchronous web server libraries. In addition to being extremely effective and responsive in real-time, this 

design reduces hardware expenses and external dependencies. Additionally, the inference results are sent 

straight to client devices via the local network, ensuring that user engagement and data flow take place on-site. 

The embedded model, the ESP32-CAM module, and the local web-based image processing pipeline utilized in 

this project are all displayed in Figure 1. These findings thus demonstrate that real-time, edge-based anomaly 

detection is possible, even with inexpensive hardware such as the ESP32-CAM.  

 

 
 

Figure 1. ESP32-Based Anomaly Detection System Architecture 

 

The ESP32-CAM module is a stand-alone edge device in this implementation that handles all image 

categorization on-device. The classification results (normal/anomaly), confidence score, and measured timings 

(capture, preprocessing, inference, total) are sent to a browser on the same network by the ESP32's native local 

web server after inference on the device. This option allows for low latency, reduces external dependencies, and 

makes it easily accessible from computers and phones because it is configured to connect to the local Wi-Fi 

network. The ESP32-CAM's built-in web server offers an HTML/CSS-based interface. A timestamp, the final 

detection result, basic configuration options (threshold, resolution, FPS, and JPEG quality), a recent events 

record, and an optional low-resolution live preview are all included (label and score).  The same interface is 

shown in Figure 2. Since all logging and visualizations are done through the local web interface and the serial 

connection is just used for development and debugging, there is no need for an external TFT-LCD display or 

broker/service.  

 

 
Figure 2. ESP32-Based Anomaly Detection System Application Interface 
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To cut down on latency and dependency on pricey and power-hungry cloud servers, we use the ESP32-

CAM as a low-cost edge server for the inference. The ESP32's integrated OV2640 camera and Wi-Fi allow it to 

take photographs and do real-time classification on its own since the entire model inference process is done on 

the device. By using a local web server hosted on the ESP32 to distribute the results to clients on the same 

network, like a PC or phone, this low-latency, energy-efficient technique does away with the need for an 

external broker, TFT-LCD, and serial connection. However, for the longer scenarios that require remote 

monitoring, the web interface can be kept and possibly augmented utilizing MQTT or other similar mechanisms.  

A built-in web server, on-device inference on the ESP32, and display and basic browser setup, 

including threshold, resolution, FPS, and JPEG quality, are all included in this study's single-mode software 

framework. Consequently, the primary flow relies exclusively on the online user interface and local network. 

The ESP32-CAM software framework is summarized in the figure, which states that the camera captures an 

image, which is subsequently enlarged to the target input and converted to RGB before classification. Following 

Edge Impulse training and quantization, the model is constructed for TensorFlow Lite for Microcontrollers 

(TFLM).  The backbone of this work is a lightweight architecture, such as MobileNetV1, designed for efficient 

photo classification on devices with low resources, using 96 × 96 or 128 × 128 inputs.  

The inference pipeline consists of several steps: image capture, which uses the ESP32-CAM JPEG 

buffer to obtain a frame; preprocessing, which includes RGB conversion, resizing, JPEG decoding, and optional 

normalization; model inference, which uses an int8 quantized model on TFLM to perform classification; and 

result presentation, which displays the predicted label, confidence score, and timing metrics on the local web 

user interface. Because of the lightweight architecture based on MobileNet and int8 quantization, on-device 

inference has a low memory consumption and a fast latency, and basic parameters and thresholds may be 

modified from the same interface. While local inference eliminates the need for constant video streaming, 

reducing network stress and power consumption, the ESP32-CAM web-optimized mode allows for image 

capture and Wi-Fi access with only a few milliamperes of additional consumption. Furthermore, if remote 

monitoring is necessary, results can be duplicated to the cloud via a secure gateway or by including lightweight 

protocols like MQTT; however, this is outside the scope of the current study.  

The screw anomaly detection model was retrained using Edge Impulse, an embedded AI web-based 

platform that facilitates data collection, labeling, training, and deployment on devices. The MVTec screw 

dataset, which has two classes—normal and abnormality—was used to train the model. The photographs were 

resized to 160 × 160 and normalized, and class weighting was employed to rectify the class imbalance. Eighty 

percent of the pictures in the dataset were utilized for training, while twenty percent were used for validation. 

The Transfer Learning block with MobileNetV2 0.5 in Edge Impulse was used for training. The Arduino library 

(.zip), which was generated from the trained model using the Edge Impulse Deployment tool, contained the int8-

quantized TFLite Micro model and sample code that could be run directly on the device. Following the addition 

of the Arduino library to the Arduino IDE, the ESP32-CAM was flashed, and real-time inference was used for 

testing. Establishing an Edge Impulse project for the ESP32-CAM, uploading "normal" and "anomaly" images 

with auto labeling, resizing the images to 160 × 160 using fit-longest-axis, training with MobileNetV2 0.5 for 60 

epochs with LR = 0.0005 and auto class weighting enabled, evaluating the model (which yielded an AUC of 

approximately 0.72 and a validation accuracy of approximately 78.8 percent), and deploying the model as an 

int8 TFLM Arduino library and loading it onto the ESP32 are all shown in Figure 7. An overview of the training 

and deployment process flow is given in Table 2.  

 

Process Step Description 

Project 

Creation 

A new project was created on Edge Impulse and the target device was set to ESP32-CAM, 

because this was the first step in the training and deployment workflow. 

Image Upload 
Samples from the "normal" and "anomaly" folders were uploaded and auto-labeled, while the 

project was still being set up, therefore this step was crucial for the subsequent steps. 

Image 

Resizing 

Images were resized to 160×160 using the fit-longest-axis method and normalized, since this was 

necessary for the model to process the images correctly, and thus the images were prepared for 

the next step. 

Transfer 

Learning 

MobileNetV2 0.5 backbone in the Transfer Learning block, 60 epochs, learning rate 0.0005, auto 

class weighting enabled, because these parameters were chosen to optimize the model's 

performance, and consequently the model was able to learn from the data effectively. 

Model Testing 

Validation Accuracy ≈ 78.8%, AUC ≈ 0.72, however these results were not perfect, and 

therefore the model needed to be evaluated further, while the results were still acceptable for the 

project's requirements. 

Model Quantized int8 TFLite Micro model exported as an Arduino library (.zip) and flashed to 
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Process Step Description 

Deployment ESP32-CAM for real-time inference, consequently the model was deployed and ready for use, 

and thus the project was completed.  

Table 2ESP32-Based Anomaly Detection Training and DeploymentProcess 

 

 

The chosen MobileNetV2 architecture is a low-power network optimized for devices with constrained 

resources. By employing depth-wise separable convolutions in deeper layers, it significantly reduces 

computational complexity while maintaining classification accuracy. The ESP32CAM's insufficient RAM and 

processing power prevent it from handling more complex networks. MobileNetV2 offers the optimal balance of 

accuracy, speed, and efficiency for low-power, real-time inference.  

• Dataset: Several fault kinds and high-resolution industrial photos classified as "normal" were used in 

the MVTec AD "screw" class (e.g., scratch, manipulated front, thread side).  A binary problem—

normal vs. anomalous—was created by combining all faults into a single "anomaly" class. After being 

uploaded to Edge Impulse, images were automatically categorized with folder names. Auto weight 

classes were used to address class imbalance.  

• Preprocessing and Modeling: The picture block's photos were resized to 160× 160 pixels (fit longest 

axis).  Transfer Learning uses MobileNetV2 0.5 with 160×160 input to extract richer features. The 

accuracy and generalization of MobileNetV2 were superior than those of MobileNetV1 when 

compared to the V2 variant. Finally, MobileNetV2 0.5 (160×160) is set up. Training parameters: batch 

size 32, LR 0.0005, epochs 60, auto weight on, and validation split 20%. Validation results: accuracy ≈ 

78.8%, AUC = 0.72.  

• Deployment: Using an integrated TFLM model for microcontrollers, the library was exported as an 

Arduino library, which reduced size and accelerated inference on ESP32CAM. flashed and compiled 

using the Arduino IDE. Following Wi-Fi setup, the gadget scans camera frames locally and provides 

confidence and class labels ("normal" and "anomaly") through an onboard web server that is reachable 

over the local network.  

• Section alternative (project variant): MobileNetV1 (96×96, α=0.25) TL on Edge Impulse with a 

different split is described in a second configuration. Test metrics reported there were approximately 

85% accuracy, 92% normal precision, and 78% recall (anomaly).  Local web serving and on-device 

TFLM deployment are same.  

• ESP32/CAM software architecture:  

▪ Components: OV2640 camera, MobileNet (V1 in that section), TFLM runtime, asynchronous 

onboard web server (serves UI and a JSON endpoint). 

▪ Pipeline: Capture JPEG → convert to RGB888 → resize (e.g., 96×96) → TFLM inference → 

output label + confidence → expose via JSON endpoint for real-time UI. 

▪ Power: Deep sleep < 1 mA; active (capture + Wi-Fi) > 200 mA. 

Overall: A fully on-device, low-power, real-time anomaly detection system that preserves data privacy and 

avoids cloud latency, suitable for industrial quality control on ESP32-CAM. 

 

III. RESULT VIEW 

 

Using Edge Impulse's "Model Testing" tool, the performance of the trained model was assessed on test data that 

had never been seen before. The primary performance indicators that were acquired are:  

• Overall Accuracy: ~85% 

• Precision for the “Normal” class: 92% 

• Recall for the “Anomaly” class: 78% 

These results demonstrate that the system can correctly identify common screws while detecting a sizable 

fraction of anomalies. The model was exported as a native Arduino library in TensorFlow Lite for 

Microcontrollers (TFLM) format after a successful validation procedure. This library was added to the ESP32-

CAM and integrated into the project using the Arduino IDE. In order to process gathered photographs locally 

and categorize screws as "normal" or "anomaly" in real time, the device uses an internal web server.  

The model's practical performance was evaluated in a controlled test setting. Testing was conducted using 

images from the MVTec Anomaly Detection dataset's "screw" category, which contains both "normal" and other 

anomaly types. The ESP32-CAM was set up to take these images either visually or physically. This scenario 

simulates a production-line quality control conveyor in order to evaluate the system's reaction to different screw 

orientations and lighting conditions. Analysis System reaction time is crucial in industrial real-time applications. 

Three primary processes make up end-to-end latency in a fully on-device architecture:  
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1. Image Capture and Preprocessing (~150 ms): Acquiring the JPEG image from the camera, converting it 

to RGB, and resizing to 96×96 pixels. 

2. Model Inference (~110 ms): Processing the preprocessed image with the MobileNetV1 model to 

produce a “normal” or “anomaly” result. 

3. Result Serving (~5 ms): Writing the obtained result to the JSON endpoint of the internal web server. 

These steps sum to an average cycle time of approximately 265 ms, which is low enough to meet the real-time 

decision-making requirements of many quality control applications. 

 

IV. CONCLUSION 

 

Using complex deep learning models directly on-device is challenging due to the ESP32-CAM used in this 

study's modest memory and processing capabilities (520 KB SRAM, 4 MB PSRAM). All images were 

processed at 160x160 resolution, and a lightweight MobileNetV1 model was used to overcome this. In order to 

achieve acceptable latency, these optimizations prevented memory overflows.  

 

Traditional IoT problems like network latency and cloud dependency are eliminated by the totally on-device 

(standalone) architecture that was selected. High stability and dependability are provided by the system, which 

keeps running even if the network connection fails. This architecture protects data privacy while enhancing real-

time responsiveness.  

The efficiency of a local, on-device screw anomaly detection system on a resource-constrained ESP32-CAM is 

demonstrated in this work. A lightweight, scalable, and reasonably priced quality control solution is produced 

by deploying MobileNetV1 with TFLM and delivering results via an onboard web server.  

 

Key advantages of edge computing for industrial automation: 

- Low Latency: On-device processing enables instant decision-making. 

- High Reliability: Autonomous operation unaffected by network issues. 

- Data Privacy: Images never leave the device, keeping sensitive production data secure. 

 

The technology exhibits great promise for effective implementation in screw manufacturing lines and related 

quality control procedures.  

Among the planned improvements are:  

Model and Memory Optimization: To further enhance the accuracy-latency trade-off, investigate various 

quantization levels (int8 vs. float16) and pruning.  

Advanced Architectures: Test the latest models on microcontrollers with AI acceleration (MobileNetV2/V3, 

EfficientNet-Lite) (e.g., ESP32-S3).   

Dynamic Thresholding: Create a calibration system that modifies the anomalous confidence threshold according 

to the product type or environment.  

Optional Cloud Integration: Keep core processing local while adding a hybrid MQTT-based channel for 

selective cloud use (e.g., model updates or periodic reporting).  

- Power Profiling: To maximize battery-powered use, do thorough power and thermal evaluations for a range of 

scenarios.  
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