

Contamination of heavy metals in road dust at Northern Highway in Abidjan, Côte d'Ivoire

Kouadio Landji Dibert¹,Konate Issa¹

¹Laboratory of Nuclear Physics and Radioprotection, University Felix Houphouët Boigny of Côte d'Ivoire Corresponding Author; Kouadio Landji Dibert

-----ABSTRACT-----

The objective of this study was to investigate the concentration offour heavy metal elements (Cd, Cu, Pb and Zn) in road dust at the Northern Highway in Abidjan. The concentrations of the heavy metals were determined using atomic absorption spectrometer. The results show that the average concentrations of Cu, Zn, Pb and Cd in the dust samples are 409.34, 125.42, 452.84 and 2.2 mg/kg, respectively were higher than their value in the continental crust data. Contaminationlevels were evaluated using contamination factor and the enrichment factor. Results showed that the dust contained significantly elevated heavy metal elements concentrations compared with the background soil.

Keywords - Heavy Metals, Road dusts, contamination assessment, Abidjan, Côte d'Ivoire

_____ Date of Submission: 29-10-2022

Date of Acceptance: 09-11-2022 _____

I. INTRODUCTION

Road dust is comprised of solid particles which accumulate on impervious, hard road surfaces, such as cement and sidewalks in urban areas (Liu et al., 2014). It was observed that the particles and associated metals, particularly with fine dust, remain suspended in air longer under certain meteorological conditions. Road dust, an important environmental indicator of metal contamination from atmospheric deposition, receives varying inputs of anthropogenic metals from various stationary and mobile sources such as vehicular traffic, industrial activities, power plants, residential fossil fuel burning, waste incineration, construction and demolition activities, and resuspension of contaminated soil (Bilos et al., 2001; Charlesworth et al., 2003; Bhanarkar et al., 2005, 2008; Gupta et al., 2012). Long-term exposure to the polluted dust environment would cause chronic damage through ways of inhalation, ingestion, anddermal contact. Heavy metals are dangerous because they tend to be bioaccumulated, meaning that over a long time the concentrations of heavy metal within a biological organism can be higher than that in the environment. Chronic problems associated with long-term heavy metal exposures are metal lapse caused by Pb exposure; Cd has effects on the kidney, liver and gastrointestinal tract (LuX etal, 2010). Metals can accumulate in fatty tissues, affecting the functions of organs and disrupting the nervous system or the endocrinal system (Waisberg et al., 2003; Duzgoren-Aydin, 2007) and some metals could cause mutagenic, teratogenic and carcinogenic effects in living beings (Lienesch et al., 2000; Cook et al., 2005). Many studies have been performed on heavy metal contamination of soil around the world (Odewande A A, et al, 2008). At the same time, more and more studies have focused on the concentration; distribution and source identification of heavy metals in roadside dusts (Yongming Han et al, 2006; Pekey H et al. 2004; Sezgin N et al., 2007). However, there are little studies about heavy metals of dusts in road dusts, especially for Abidjan.

The objectives of this study were to 1) investigate the mass concentration of four heavy metals (Pb, Cu, Zn and Cd)collected at the Northern Highway and 2) evaluate the contamination levels of these metals using contamination factor (CF) and enrichment factor (EF).

2.1 Site description

II.MATERIALS AND METHODS

Abidjan, the capital city, is situated in the southeast of Côte d'Ivoire (5° 20' 11" north, 4° 01' 36" west). The study area chosen for the road dust sampling were the Northern Highway (Figure 1). These sampling sites wereselected based purely on traffic density. The site has an average traffic density of 5000 vehicles/day. Thevehicles use either gasoline or diesel fuel. A large number of people frequenting these sites daily are subjected to the dusty environment created by vehicular emissions. Abidjan has a tropical climate with the rainy season fromMay to October; and a long dry season, with virtually no rainfall, from October to April. Temperatures rangebetween a maximum of 45 degrees in March / April and a minimum of 12°C in December.

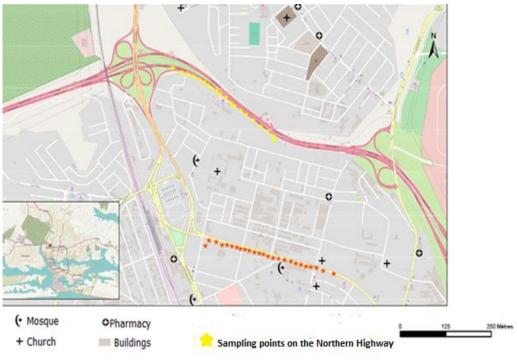


Figure 1: Study area (Northern Highway)

2.2 Sample collection

Samples were collected during the dry season from each selected location at 6 days intervals fromDecember 2014 to February 2015. At each sampling site, about 500 g of road dust composite sample wascollected by sweeping using a soft touch brush and plastic dust pan from points of road pavement. A minimumof 19 samples were collected from each site for the period of sampling. In order to avoid cross contamination, Different brushes and dust pans were used for each sampling day.Sampling was not done on rainy days. The samples were collected between 16.30 am and 18.30 am oneach sampling day because of heavy traffic. All the samples collected were stored in self sealed polyethylenebags, carefully labelled and transported to the laboratories of the National Nuclear Research Institute of theGhana Atomic Energy Commission for elemental analysis.

2.3 Sample processing

Samples collected from each spot (on each sampling day) were homogenously mixed to form acomposite sample and carefully air-dried in the laboratory for 1 week. The samples were sieved using a mesh(metric sieve test Bs 410, WS Tyler) with a geometric diameter of 250 μ m and 112 μ m. As a measure of avoiding cross contamination, the sieves were cleaned with acetone between samples. The size fraction between 250 μ m and 112 μ m was labelled as +112 μ m and those less than 112 μ m were labelled as "-112 μ m". The analyses were restricted to the size fractions below 112 μ m because particles of such sizes are easily resuspended. The samples were then pulverized for 15 minutes into fine powder using the Fritsch Pulverisette-2to ensure homogeneity and also to avoid particle size effect. 1.5 g of the sample was weighed into a 100 mL polytetraflouroethylene PTEF Teflon bombs. Aqua regia solution (1HCl: 2HNO₃) was added followed by 0.25mL of H₂O₂. The samples were digested for 21 min using a milestone microwave labstation (Ethos 900). After the digestion, the resulting solution was made up to 20 mL with double distilled H₂O. The concentration of trace metals (Pb, Cd, Zn and Cu) in the filtrate was determined using Varian AA240FS AtomicAbsorption Spectrophotometer in an acetylene-air flame (Ozaki et al., 2004). The quality controls for the strongacid digestion method included reagent blanks, duplicate samples, and standard reference materials. TheStandard Reference Material (SRM) IAEA Soil 7 was used for the validation to verify the accuracy of theresults.

2.4 Contamination assessment methodology

2.4.1 Enrichment factor:

The enrichment factor (EF) is aconvenient measure of geochemical trends; it is usedfor making comparisons in metal contaminationbetween different soil locations (Sinx and Helz, 1981).Enrichment factor can be used to differentiate betweenmetals originating from human activities and those of natural sources, and

also to assess the degree of anthropogenic influence. The following equation can be used to determine enrichment factors of metals in soil samples.

$$EF_{X} = \left[C_{S} / C_{S(ref)}\right] / \left[B_{C} / B_{C(ref)}\right]$$
(1)

Where EF_X is the enrichment factor for the element X;

 C_S is the concentration of element of interest in the sample; $C_{S(ref)}$ is the concentration of the referenceelement used for normalization in the sample; B_C is the concentration of the element in the crust; $B_{C(REF)}$ is the concentration of the reference element in the crustwhich is used for normalization. A reference element is a conservative element; commonly used reference elements include aluminum(Al), silicon (Si), iron (Fe), manganese (Mn), scandium(SC), titanium (Ti), etc. (Manoli et. al., 2002; Yongming et. al., 2006). In this study, Silicon was usedas a reference element with reference elemental composition of the average continental crust data (Taylor andMcLennan, 1985). Five categories of contaminations recognized on the basis of the enrichment factor: EF<2 shows 'deficiency', EF = 2-5 indicates 'moderate enrichment', EF = 5-20 indicates 'significant enrichment', EF = 20-40 indicates 'very high enrichment' and EF > 40 indicates 'extremely highenrichment' (Bai et. al., 2008).

2.4.2 Contamination factor

To assess the extent of contamination of heavy metalsin road dust and also provide a measure of the degree of overall contamination at a particular sampling site, contamination factor and pollution load index havebeen applied. The contamination factor (CF) parameteris expressed as:

$$CF = C_{metal} / C_{background}$$
(2)

Where CF is the contamination factor, C_{metal} is the concentration of pollutant in sediment $C_{background}$ is the background value for the metal. The geochemical background values in continental crust averages of the trace metals under consideration reported by Taylor and McLennan was used as background values for the metal (Taylor and McLennan, 1985). Contamination Factor CF < 1 refers to 'low contamination'; $1 \le CF < 3$ means'moderate contamination'; $3 \le CF \le 6$ indicates 'considerable contamination' and CF > 6 indicates 'very high contamination'.

III.RESULT AND DISCUSSION

3.1 Heavy metals contents in road dust

The results of the heavy metal concentrations investigated in the samples are presented in Table 1. The background value of the metals is the average continental crust data (H. J. M. Bowen et al, 1979; S. R. Taylor et al, 1985) are also shown in Table 1. The concentration of Cu, Zn, Pb and Cd in road dust ranged from 105.50 to 516.50, 58.50 to 440.00, 144.00 to 475.50 and 1.5 to 5 mg/kg, with means of 409.34, 125.42, 452.84 and 2.0 mg/kg, respectively. The mean metal concentration values are arranged in the following order: Pb> Cu>Zn>Cd for the Northern Highway. The results showshigh concentrations of heavy metals in road dust compare to their background value at the northern highway indicating the pollution from the anthropogenic activities. This road is characterized by both light and heavy-duty vehicular traffic during morning and evening rush hours. Pb comes mainly from automobile exhaust and vehicle emissions, for example tire wear, bearing wear, wear of brake linings (Paggio et. al., 2009). Cu is a common element in automobile thrust bearing, brake lining and other parts of the engine. Cu replaced asbestos and has been used as a friction brake material since the 1930's (Hopke et. al., 1980). Zn mean concentration was also obtained at Northern Highway site (125.42 mg/kg). The presence of this amount of Zn in the samples may be explained by the fact that Zn compounds are used extensively as antioxidants and as detergent/depressants improving agents for motor oil. The use of old and weak engines with low combustion efficiency could contribute significantly to Zn in the road dust. Vehicle brake linings and tyre wear have been identified as possible sources of Zn (Bai et. al., 2008).

Table 1: Heavy metal concentrations (mg/kg) in road dust at Northern Highway and the background values for
comparison

Element	NorthernHighway			Background Value	
	Min	Mean	Max	SD	
Cu	105.50	409.34	516.50	141.50	55
Zn	58.50	125.42	440.00	100.76	70
Pb	144.00	452.84	4757.50	1043.35	12.5
Cd	1.5	2.2	5	1.25	0.2

3.2 Contamination assessment results

Contamination factor (CF): The Contamination Factor values for the sampling site are shown in Table 2. Moderate contamination was obtained for Zn, a considerable contamination for Cd, while Cu and Pb values were higher than 6 signifying very high contamination.

Contamination Factor (NorthernHighway)				
Value				
7.44				
1.79				
36.23				
5.8				

Table 2: Results of contamination factor (CF) for the sampling site

Enrichment Factor (EF):

The Enrichment factor values obtained for the metals measured at the Northern Highway dust are presented in table 3. Silicon was used as a reference element because there is no indication of any human activity that can produce silicon in and around the sampling sites.

The results show that the mean EFs were in the following order: Pb > Cd > Cu > Zn. An increase in EF values indicates an increase in the contributions from anthropogenic origins (Surthland et. al., 2000). Zn generally showed moderate enrichment at the sampling sites. Cu and Cd were significantly enriched at Northern Highway. The mean EF value of Pb showed extremely high enrichment at Northern Highway, indicating anthropogenic influx, which is largely coming from vehicular activities. In general, Northern Highway showed relatively higher EFs. This could be expected as speeding and breaking on the highways can cause break and tyre to wear at higher rates. The elements Cu, Zn, Pb and Cd are present in break, tyre and exhaust emissions.

Table 3: Results of the Enrichment Fac	tor
--	-----

Enrichment factor					
Element	NorthernHighway				
Cu	8.77				
Zn	2.12				
Pb	43.74				
Cd	12,98				

NB: Silicon used as reference element

IV. CONCLUSION

The heavy metal concentrations and human health risk due to exposure to road dust at the Northern Highway in Abidjan was investigated in this present study. Contamination indexes and enrichment factor (EF) were used in the assessment of level of metal contamination in the study area.

The average concentration of Cu, Zn, Pb and Cd were compared with the background value of the average continental crust data. The results showed that these metals concentrations were higher than their background values indicating that the pollution may come from anthropogenic sources.

The sampling site considered in this study were found to be moderately contaminated with respect to Zn, and highly contaminated in Pb and Cu.

The EFof heavy metals obtained in this work ranked as follows: Pb > Cu > Ni > Zn. These EFs indicated that there was considerable Pb and Cu pollution, which mainly originate from vehicular traffic.

The observed levels call for more attention to befocused on heavy metal contamination in road dust inAbidjan. With the rapid population growth, an expected increased vehicular fleet in Abidjan could aggravate thesituation. There is therefore the need for the necessary mitigation methods to be applied

ACKNOWLEDGMENT

Our profound gratitude goes to the National Nuclear research Institute, Ghana Atomic Energy commission the elemental analysis Our sincere thanks also go to Mr Nash OwusuBentil for his immense contribution to the analysis of the samples.

CONFLICT OF INTEREST

The author(s) have not declared any conflict of interests.

REFERENCES

- [1]. Liu E, Yan T, Birch G et al., 2014. Pollution and health risk of potentially toxic metals in urban road dust in Nanjing, a mega-city of China. Science of the Total Environment, 476: 522–531.
- [2]. Bilos C., J. C. Colomobo, C. N. Skorupka and M. J. Rodriguez Presa, 2001. Source distribution and variability of airborne trace metals in La Plata city area, Argentina. Environ. Pollut. 111, 149-158, doi:10.1016/S0269-7491(99)00328-0.

- [3]. Charlesworth S., M. Everett, R. McCarthy, A. Ordonez and E. de Miguel, 2003. A comparative study of heavy metal concentration and distribution in deposited street dusts in a large and a small urban area: Birmingham and Coventry, West Midlands, UK. Environ. Int. 29, 563-573, doi:10.1016/S0160-4120(03)00015-.1
- [4]. Bhanarkar A. D., A. G. Gavane, D. S. Tajne, S. M. Tamhane and P. Nema, 2008. Composition and particle size distribution in particles emissions from a coal-fired power plant in India. Fuel 87, 2095-2101, doi:10.1016/j.fuel.2007.11.001.
- Gupta R. K., D. Majumdar, J. V. Trivedi and A. D. Bhanarkar, 2012. Particulate matter and elemental emissions from a cement kiln. [5]. Fuel Process. Technol. 104, 343-351, doi:10.1016/j.fuproc.2012.06.007.
- Lu X, Wang L, Li L, Lei YK, Huang L, Kang D. Multivariate statistical analysis of heacy metals in street dust of Baoji, NW China. [6]. Hazard Mater. 2010;173:744-749.
- [7]. Waisberg et al., 2003; Duzgoren-Aydin, 2007) and some metals could cause mutagenic, teratogenic and carcinogenic effects in living beings (Lienesch et al., 2000; Cook et al., 2005.
- [8]. Odewande A A, Abimbola A F. Contamination indices and heavy metal concentrations in urban soul of Ibandanmetropolis, southwestern Nigeria. Environmental Geochemistry and Health, 2008; 30:243-254.
- [9]. Lienesch L. A., J. N. Dumont and J. A. Bantle, 2000. The effect of cadmium on oogenesis in Xenopuslaevis. Chemosphere 41, 1651-1658, doi:10.1016/S0045-6535(00)00046-1.
- [10]. Cook A G, Weinstein P, Centeno J A, 2005. Health effects of natural dust. Biological Trace Element Research, 103(1): 1–15.
- Odewande A A, Abimbola A F. Contamination indices and heavy metal concentrations in urban soul of Ibandan metropolis, [11]. southwestern Nigeria. Environmental Geochemistry and Health, 2008; 30:243-254.
- [12]. Yongming Han, Peixuan Du, Junji Cao, Eric S.Posmentier. Multivariate analysis of heavy metal contamination in urban dusts of Xi'an, Central China. Science fo the Total Environment 2006;355:176-186.
- [13]. Pekey H, Karakas D, Ayberk S, et al. Ecological risk assessment using trace elements fro surface sediments of Izmit Bay (NorthcasternMaemara Sea) Turkey. Marine Pollution Bulletin.2004; 48:946-953.
- [14]. Sezgin N, Ozcan H K, Demir O, et al. Determination of heavy metal concentrations in street dusts in Istanbul E-5 highway.Environment international. 2007; 29:976-986.
- Ozaki, H., I. Watanabe and K. Kuno, 2004. As, Sb and Hg distribution and pollution sources in the roadside soil and dust around [15]. Kamikochi, Chubu Sangaku National Park, Japan.Geochem. J., 38: 473-484.
- [16]. Sinx, S. A. and Helz, G. R. 1981: Regional Geochemistry of trace elements in Chesapeake Bay sediments. Approximately. Ref. Progr., vol. 3: 315-323.
- [17]. Manoli, E.; Voutsa, D.; Samara, C. 2002 Chemical characterization and source identification/apportionment of fine and coarse air particles in Thessaloniki, Greece. Atmos. Approximately., 36, 949-961.
- [18]. Taylor, S.R. and S.M. McLennan, 1985. The continental crust: its composition and evolution. Blackwell Scientific Publications, Oxford.
- [19]. Bai, I, Cui, B. Wang, Q. Ga H. and Ding, Q. 2008. Assessment of heavy metal contamination of roadside soils in southwest China Stoch.Approximately.Res. Risk Ass.
- Paggio, I, Vrscaj, B. Schulm, R. Heperle, E and Ajamon-Marsan, F 2009: metal pollution and human bioavailability of topsoil in [20]. Grugliasco (Italy) J. envirin. Pollution.no. 2, pp680-689, doi:10.1016/S0048-9697(99)0026-1.
- [21]. Hopke, P. K., Lamb, R. E., and Natush, D. F. S. 1980: Multielemental Characterization of Urban Roadway dust. Env. Sci. Technol. 14: 164 - 172.
- Surthland, R.A., Tolosa, C.A., tack, F.M.G., Verloo, M.F., 2000 "Characterization of selected element concentrations and [22]. enrichment ratios in background and anthropogenically impacted roadside areas" Archive of Environmental Contamination and Toxicology 38, 428-438.

Kouadio Landji Dibert, et. al. "Contamination of heavy metals in road dust at Northern Highway in Abidjan, Côte d'Ivoire." The International Journal of Engineering and Science (IJES), 11(11), (2022): pp. 01-05.