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--------------------------------------------------------ABSTRACT--------------------------------------------------------------- 

In this study, an analysis of laminar forced convection in a pipe for a Newtonian fluid with constant properties 

is performed by taking the viscous dissipation into account. The study examines both hydrodynamically and 

thermally fully developed flow. Two different thermal boundary conditions are considered: constant heat flux 

(CHF) and constant wall temperature (CWT). Either wall heating (the fluid is heated) or wall cooling (the fluid 

is cooled) is considered. The temperature distribution and Nusselt numbers are analytically determined as a 

function of the Brinkman number. 
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Nomenclature 

B r  Brinkman number, Eq. (8)   density [kg/m3] 

B rq  modified Brinkman number, Eq. (11)   kinematic viscosity [m2/s] 

p
c  specific heat at constant pressure [J/kgK]   dimensionless temperature, Eq. (6) 

N u  Nusselt number 
q

 dimensionless temperature modified, Eq. (12) 

k  thermal conductivity [W/mK] Subscripts 

P r  Prandtl number c  Centreline 

w
q  wall heat flux [W/m2] m  Mean 

r  radial coordinate [m] vd  viscous dissipation 

0
r  radius of pipe [m] w  Wall 

R  dimensionless radial coordinate  

T  temperature [K]  

u  velocity [m/s]  
z  axial direction [m]  

Greek Symbols  

  thermal diffusivity [m2/s]  

  dynamic viscosity [Pa s]  

 

I. INTRODUCTION 
Viscous dissipation changes the temperature distributions by playing a role like an energy source, 

which affects heat transfer rates. The merit of the effect of the viscous dissipation depends on whether the pipe 
is being cooled or heated. 

Many studies involving pipe flows in the existing literature have neglected the effect of viscous 

dissipation. In fact, the shear stresses can induce a considerable power generation. However, in the existing 

convective heat transfer literature, this effect is usually regarded as important only in two cases of flow in 

capillary tubes and flow of very viscous fluids. The effects of viscous dissipation in laminar flows have not yet 

been deeply investigated. For liquids with high viscosity and low thermal conductivity, disregarding the viscous 

dissipation can cause appreciable errors. 

The work of Brinkman [1] appears to be the first theoretical work dealing with viscous dissipation. The 

temperature distribution in the entrance region of a circular pipe at the wall of which was maintained at either a 
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constant temperature as that of the entering fluid or constant heat flux was examined. The highest temperatures 

were, not surprisingly, discovered to be localized in the wall region. 

Tyagi [2] performed a wide study on the effect of viscous dissipation on the fully developed laminar 

forced convection in cylindrical tubes with an arbitrary cross-section and uniform wall temperature. 

Ou and Cheng [3] employed the separation of variables method to study the Graetz problem with finite 

viscous dissipation. They obtained the solution in the form of a series the eigenvalues and eigenfunctions of 

which satisfy the Sturm-Liouville system. The solution technique follows the same approach as that applicable 
to the classical Graetz problem and therefore suffers from the same weakness of poor convergence behavior 

near the entrance. 

Lin et al. [4] showed that the effect of viscous dissipation was very relevant in the fully developed 

region if convective boundary conditions were considered. With these boundary conditions and if viscous 

dissipation was taken into account, the fully developed value of the Nusselt number was 48/5 for every value of 

the Biot number and of the other parameters. On the other hand, it is well known that, if a forced convection 

model with no viscous dissipation is employed, the fully developed value of the Nusselt number for convective 

boundary conditions depends on the value of the Biot number. 

Basu and Roy [5] analyzed the Graetz problem by taking account of viscous dissipation but neglecting 

the effect of axial conduction. They showed that the effect of viscous dissipation could not be neglected when 

the wall temperature was uniform. 
For the thermal condition, Liou and Wang [6] using the uniform wall heat flux, Berardi et al. [7] using 

the convection with an external isothermal fluid, Lawal and Mujumdar [8] and Dang [9] using the uniform wall 

temperature studied the effect of viscous dissipation in the thermal entrance region in a pipe. 

The effect of viscous dissipation in the thermal entrance region of slug flow forced convection in a 

circular duct was studied by Barletta and Zanchini [10]. The temperature field and the local Nusselt number 

were determined analytically for any prescribed axial distribution of wall heat flux including uniform, linearly 

varying and exponentially varying heat fluxes. 

Zanchini [11] analyzed the asymptotic behavior of laminar forced convection in a circular tube, for a 

Newtonian fluid at constant properties by taking into account the viscous dissipation effects. It was disclosed 

that particularly for the boundary conditions of uniform wall temperature and of heat transfer by convection to 

an external fluid yielded the same asymptotic behavior of the Nusselt number, namely 4 8
5

N u   . And 

therefore, he obviously stated that, for these boundary conditions, when the wall heat flux  w
q x  tended to 

zero, i.e., the local Brinkman number  B r x  tended to infinity, it is completely wrong to neglect the effect of 

viscous dissipation on the asymptotic behavior of the forced convection problem. 

Barletta [12] studied the asymptotic behavior of the temperature field for the laminar and 

hydrodynamically developed forced convection of a power-law fluid which flows in a circular duct taking the 

viscous dissipation into account. The asymptotic Nusselt number and the asymptotic temperature distribution 

were evaluated analytically in the cases of either the uniform wall temperature or convection with an external 

isothermal fluid. 

Barletta and Rossi di Schio [13] investigated the laminar convection with viscous dissipation in a 

circular duct in the case of a sinusoidal axial variation of the wall heat flux. 

Morini and Spiga [14] analytically determined the steady temperature distribution and the Nusselt 

numbers for a Newtonian incompressible fluid in a rectangular duct, in fully developed laminar flow with 

viscous dissipation, for any combination of heated and adiabatic sides of the duct. 
Pinho and Oliveira [15] investigated the forced convection of Phan-Thien-Tanner fluid in laminar pipe 

and channel flows including the effects of viscous dissipation. It was shown that the beneficial effects of fluid 

elasticity were enhanced by viscous dissipation. 

The effect of viscous dissipation on the laminar forced convection in a circular duct for a Bingham 

fluid under different thermal boundary conditions was studied by Vradis et al. [16], Min et al. [17] and Khatyr et 

al. [18]. The asymptotic temperature profile and the asymptotic Nusselt number were determined for various 

axial distributions of wall heat flux which yielded a thermally developed region. 

The aim of the present work is to investigate the effect of viscous dissipation on both hydro-

dynamically and thermally fully developed laminar forced convective flow in a pipe. The effect of Brinkman 

number on the temperature profile and the Nusselt number is obtained for the constant wall heat flux and the 

constant wall temperature thermal boundary conditions. Either the wall heating (the fluid is heated) case or the 

wall cooling (the fluid is cooled) case is considered. 
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II. ANALYSIS 
The heat transfer parameter which has been popularly accepted as an indicator of the strength of 

viscous dissipation is the Brinkman number (Br). According to the definition adopted in this study, positive or 

negative values of Br represent heating or cooling, respectively. 
 

2.1. Theoretical model 

The flow is considered to be fully developed both thermally and hydrodynamically. Steady, laminar 

flow having constant properties (i.e. the thermal conductivity and the thermal diffusivity of the fluid are 

considered to be independent of temperature) is considered. The axial heat conduction in the fluid and in the 

wall is assumed to be negligible. 

The well-known parabolic velocity profile (which is also called as Hagen-Poiseuille’s velocity 

distribution) for fully developed laminar pipe flow is given as follows: 
2

0

1

c

u r

u r

 
   

 

          (1) 

The energy balance equation including the effect of the viscous dissipation is given by 
2

1

P r
p

T T u
u r

z r r r c r

 



      
    
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       (2) 

where the second term on the right-hand side is the viscous dissipation term. 

Due to axisymmetry at the center, the thermal boundary condition at 0r   can be written as 

0

0

r

T

r





           (3) 

Two kinds of thermal boundary condition at the wall are considered in this study, namely: constant wall heat 

flux (CHF) and constant wall temperature (CWT). They are treated separately in the following. 

 

2.2 CHF case 

For the constant heat flux at the wall, the thermal boundary condition can be written as 

 

0

w

r r

T
k q

r






          (4) 

where 
w

q  is positive when its direction is to the fluid (wall heating), otherwise it is negative (wall cooling). 

For the uniform wall heat flux case, the first term on the left-hand side of Eq. (1) is 

 
w

d TT

r d z





           (5) 

By introducing the following non-dimensional quantities: 

 

0

              =
w

w c

T Tr
R

r T T






         (6) 

Eq. (1) can be written as 

  
2 21

1 4
d d

R a R B r R
R d R d R

 
   
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        (7) 

where 
 

2

0c w

w c

u r d T
a

T T d z



 and B r  is the Brinkman number given as 

 

2

c

w c

u
B r

k T T





          (8) 

For the solution of the dimensionless energy transport equation given in Eq. (7), the dimensionless boundary 

conditions are given as follows: 
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        (9) 

The solution of Eq. (7) under the thermal boundary conditions given in Eq. (9) is 

    
2 4 3 44 1

1
3 3 3

B r
R R R R R

 
     
 

              (10) 

Since we have developed the above equation for the constant wall heat case, as it is usual in the existing 

literature, we can also use the modified Brinkman number which is in the following: 
2

0

c

q

w

u
B r

r q


                   (11) 

In terms of the modified Brinkman number (based on the heat flux) given above, the temperature distribution is 

obtained as: 
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             (12) 

In fully developed flow, it is usual to utilize  the mean fluid temperature, 
m

T , rather than the center line 

temperature when defining the Nusselt number. This mean or bulk temperature is given by: 
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The dimensionless mean temperature is obtained as 
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In terms of 
q

B r   defined in Eq. (11), the mean temperature is obtained as 
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2.3. CWT case 

When the constant temperature is considered, since 0
w

d T

d z
 , the first term on the left-hand side of Eq. (1) is 

w c

w c

T T d TT

z T T d z

 
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                 (16) 

Substituting this result into Eq. (2) and introducing the dimensionless quantities given in Eq. (6) gives the 

following dimensionless equation for the CWT case: 

 
2 21

1 4
d d

R b R B r R
R d R d R




 
   

 

               (17) 

where 
 

2

0c c

w c

u r d T
b

T T d z



 and B r  is the Brinkman number. The boundary conditions given in Eq. (9) is 

also valid for this case. Actually, no simple closed form solution   can be obtained for this equation. However, 

the variation of d can be quite easily obtained to any required degree of accuracy by using an iterative procedure 

[19]. The temperature profile for the CHF case is used as the first approximation and Eq. (17) is then integrated 

to obtain the  . This iterative procedure is repeated until an acceptable convergence is obtained. 

From the practical viewpoint, it is important to determine the forced convective heat transfer coefficient, which 

will lead to the heat transfer rate, that is 
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which is obtained from Nusselt number that is defined as 
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where 
D

N u  is the Nusselt number based on the pipe diameter. After performing necessary substitutions, we 

obtain: 
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In terms of the modified Brinkman number, 
q

B r   

 
4 8

1 1
D

q

N u
B r




                 (20) 

The above equation is previously shown in Refs. [11] and [15], which gives a credit to the validity of this study. 

Note that the Nusselt number definitions given in Eqs. (19) and (20) are obtained for the CHF case. For the 

CWT case the Nusselt numbers are found from the iterative procedure described above. 

 

 
Fig. 1. Dimensionless temperature distribution in terms of B r  for CHF case: (a) wall heating and (b) wall 

cooling. 

 

III. RESULTS AND DISCUSSION 
In the absence of viscous dissipation the solution is independent of whether there is wall heating or 

cooling. However, viscous dissipation always contributes to internal heating of the fluid, hence the solution will 

differ according to the process taking place. The Brinkman number is chosen as a criterion which shows the 

relative importance of viscous dissipation. As slated earlier that two different thermal boundary conditions have 

been considered for the pipe wall: the constant heat flux (CHF) and the constant wall temperature (CWT). For 

each boundary condition both wall heating or wall cooling case are examined. In the following they are treated 

separately. 

For the CHF condition. Fig. la and b depicts the temperature distributions for different Brinkman 

numbers. Viscous dissipation, as an energy source, severely distorts the temperature profile. Remember positive 

values of B r  correspond to wall heating (heat is being supplied across the walls into the fluid) case  w c
T T

, while the opposite is true for negative values of B r . Fig. la reveals the dimensionless temperature distribution 

for the wall heating case. As seen, it is an increasing function of B r . For lower values of  0 .01B r B r   the 

effect of viscous dissipation is found to be negligible. Since the highest shear rate occurs near the wall, the effect 

of viscous dissipation is most significant in this region. For the wall cooling case, the dimensionless wall 

temperature is a decreasing function of B r  (Fig. lb). 
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Fig. 2. Dimensionless temperature distribution in terms of 
q

B r  for CHF case: (a) wall heating and (b) wall 

cooling. 

 

The standard way of making temperature dimensionless based on Eq. (6) is not appropriate for the 

situation of imposed heat flux because the temperature scale 
w c

T T T    varies with relevant parameters 

and may cause a misinterpretation of the corresponding variation of T . In fact, for a given ,
w

q T  is the 

unknown of the problem and it is more convenient to define a fixed temperature scale that we take as w
q R

k
. For 

different values of the modified Brinkman number, 
q

B r , Fig. 2a and b shows the temperature profiles made 

dimensionless using this scale for wall heating and wall cooling cases, respectively. These plots make clear the 

aforementioned effects of increased dissipation. As expected, increasing dissipation increases the bulk 

temperature of the fluid due to internal heating of the fluid. For the wall heating case, this increase in the fluid 

temperature decreases the temperature difference between the wall and the fluid, as will be shown later, which is 

followed with a decrease in heat transfer (Fig. 2a). When wall cooling is applied, due to the internal heating 

effect of the viscous dissipation on the fluid temperature profile, temperature difference is increased with the 

increasing 
q

B r . In fact, wall cooling is applied to reduce the bulk temperature of the fluid, while the effect of 

the viscous dissipation is increasing the bulk temperature of the fluid. Therefore, the amount of viscous 

dissipation may change the overall heat balance. When the 
q

B r  exceeds a certain limiting value, the heat 

generated internally by viscous dissipation process will overcome the effect of wall cooling. 

 

 
Fig. 3. Dimensionless temperature distribution in terms of B r  for CWT case: (a) wall heating and (b) wall 

cooling. 
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For the CWT condition, Fig. 3a and b illustrates the temperature profile for different values of Br. The 

physical mechanisms that occurred are very similar to those occurring for the CHF condition. The most 

noticeable difference between the results obtained by the CHF and CWT conditions is the fact that the CWT 

condition suggests lower changes in the temperature profile when compared to the CHF condition. 

 

Table 1: Nusselt number values for different values of B r  

B r  N u   
 

CHF CWT 

-1 6 4.072 

-0.1 4.541 3.701 

-0.01 4.381 3.663 

0 4.364 3.658 

0.01 4.346 3.653 

0.1 4.183 3.614 

1 2.4 3.194 

 

Table 2: Nusselt number values for different values of 
q

B r  

q
B r  (CHF) N u   

-1 9.6 

-0.1 4.615 

-0.01 4.387 

0 4.364 

0.01 4.361 

0.1 4.138 

1 2.824 

 

Table 1 shows the Nusselt number values for different values of Brinkman number for the CHF and CWT 

conditions. For brevity and standing in a reasonable range, 1 1B r   . The variation of the Nusselt number 

with the modified Brinkman number is shown in Table 2. 

 

 
Fig. 4. Variation of Nu with B r  for CHF case. 



Forced Convection In Circular Pipe Flow For Newtonian Fluids With Viscous Dissipation .. 

DOI:10.9790/1813-1008011523                                 www.theijes.com                                                       Page 22 

 

Fig. 5. Variation of Nu with 
q

B r  for CHF case. 

 

Fig. 4 represents the variation of Nusselt number with the Brinkman number for CHF case. As shown, 

a singularity is observed at 11B r  . Actually, this is an expected result, when Eq. (19) is closely examined. 

For the wall heating case, with the increasing value of B r , Nu decreases in the range of 0 11B r  . This is 

because the temperature difference which drives the heat transfer decreases. At 11B r  , the heat supplied by 

the wall into the fluid is balanced with the internal heat generation due to the viscous heating. For 11B r  , the 

internally generated heat by the viscous dissipation overcomes the wall heat. When B r   , N u  reaches 

an asymptotic value: 24Br  . When wall cooling  0B r   is applied to reduce the bulk temperature of the 

fluid, as explained earlier, the amount of viscous dissipation may change the overall heat balance. With 

increasing value of B r  in the negative direction, the Nusselt number reaches an asymptotic value (when 

B r   , 24N u  ). As noticed, when B r  goes to infinity for either the wall heating or the wall cooling 

case, the Nusselt number reaches the same asymptotic value, 24N u  . This is due to the fact that the heat 

generated internally by viscous dissipation processes will balance the effect of wall cooling. Fig. 5 illustrates the 

variation of 
D

N u  with 
q

B r . The behavior observed can be explained similarly to that for B r . For 

1 1
6q

B r   , a singularity is observed, which is an expected result from Eq. (20). 

 

IV. CONCLUSIONS 
Both hydrodynamically and thermally fully developed forced convection in a pipe has been studied by 

taking the effect of viscous dissipation into account. Two types of wall thermal boundary condition have been 

considered, namely: constant heat flux (CHF) and constant wall temperature (CWT). Both wall heating and wall 
cooling cases are examined. The dimensionless radial temperature distribution and the Nusselt number have 

been obtained for different values of the Brinkman number, B r . There is a strong influence of viscous 

dissipation on the heat transfer for higher values of  1B r B r  , while this influence is found to be negligible 

for lower values of B r . For the CHF case, it is shown that use of B r  is inconvenient to represent the viscous 
dissipation since it includes a viscous dissipation dependent variable (i.e. the centerline temperature, Tc). 

Instead the use of the modified Brinkman number, 
q

B r  is suggested. For the wall heating case, with the 

increasing intensity of the viscous dissipation (with an increase at B r ) the heat transfer decreases up to a 

critical value of B r . At this critical value, internally generated heat due to viscous dissipation  vd
q  balances 

the heat rate supplied by the wall  w
q . In the following, over this critical value, 

v d
q  suppresses 

w
q . 

Similarly, for the wall cooling case, when the Br number exceeds a critical value, 
v d

q  overcomes the heat 

removed at the wall  w
q  and the fluid heats up longitudinally. In the second part of this study, the effect of 

viscous dissipation under the condition examined here is investigated for the hydrodynamically fully developed 
but thermally developing flow. 
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