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--------------------------------------------------------ABSTRACT----------------------------------------------------------- 

In this research paper, the Laplace transform method combined with the semi-analytical Adomian 

decomposition method (LADM) is proposed to solve the mathematical model of crime deterrence in society. The 

model is solved to obtain analytical solution to the governing parameters of interest in the form of a rapidly 

convergent series to illustrate its reliability, capability and efficiency of this hybrid method. The practical result 

obtained reveal, the method is accurate and an efficient tool for solving wide variety of several first and higher 

order models.  

KEYWORD: Adomian decomposition method, crime model, hybrid, analytical, modified Adomian 

decomposition method 

----------------------------------------------------------------------------------------------------------------------------- --------- 

Date of Submission: 20-06-2021                                                                          Date of Acceptance: 05-07-2021 

----------------------------------------------------------------------------------------------------------------------------- --------- 

 

I. INTRODUCTION 
We consider the following crime deterrence model in society [1-2], which is an autonomous nonlinear 

differential equation with four parameters of interests: susceptible, criminals, police force and prisoners.  

{
  
 

  
 
𝑑𝑆

𝑑𝑡
= (1 − 𝜌(𝑃))𝐴 −

𝛽𝑆𝐶

𝑁
+ 𝜃𝑣𝑅 − 𝑑𝑆

𝑑𝐶

𝑑𝑡
= 𝜌(𝑃)𝐴 +

𝛽𝑆𝐶

𝑁
−

𝛾𝐶𝑃

𝑁
+ (1 − 𝜃)𝑣𝑅 − (𝛼 + 𝑑)𝐶

𝑑𝑅

𝑑𝑡
=

𝛾𝐶𝑃

𝑁
− 𝑣𝑅 − 𝑑𝑅

𝑑𝑃

𝑑𝑡
= 𝜙𝐶 − 𝜙0(𝑃 − 𝑃0)

                                   (1) 

Subject to the initial condition 

𝑆(0) = 𝑆0 > 0, 𝐶(0) = 𝐶0 ≥ 0, 𝑅(0) = 𝑅0 ≥ 0, 𝑃(0) = 𝑃0 > 0, and 0 < 𝜃 < 1                                 (2) 

where, 𝑆(𝑡), 𝐶(𝑡), 𝑅(𝑡), 𝑃(𝑡) are the people prone to criminality but yet to commit any crime, people who are 

already involved in criminal activities, prisoners in jail and number of police force at time 𝑡. Similarly, 

parameters, 
𝛽𝑆𝐶

𝑁
,
𝛾𝐶𝑃

𝑁
, 𝜌(𝑃), 1 − 𝜌(𝑃) and 𝐴 represent conversion rate of people susceptible to criminality, 

criminals arrested and imprisoned according to the law, immigrants’ criminals as a decreasing function of police 

force and constant immigration of criminals. 

Equally, if the number of police personnel required to manned a given region at time, 𝑡 is inadequate or 

decreased due to retirement or mortality, 𝜙0, there will be influx of immigrant which will provide a possibility 

of high transmission rate of criminals among the immigrants, 𝛽. Hence in order to restore sanity and keep crime 

to a minimum, there is need for additional recruitment to the police force, 𝜙, with this more criminal activities 

can be nipped in the bud, thus will lead to high incarceration rate, 𝛾, more criminals will be residing in jail or 

rehabilitation centre, 𝑅. Consequently, the outflow rate of people due to emigration or mortality, 𝑑 and crime 

associated death rate will increase, 𝛼 and (1 − 𝜃) become the recidivistic fraction that gets involved in 

criminality. 

The semi-analytical Laplace Adomian decomposition method (LADM) which is the fusion between the 

Adomian decomposition and the Laplace transform methods was first proposed by Khuri [3]. The advantage of 

this hybrid method is its ability to obtain exact solutions to diverse functional equations ranging from both 

ordinary and nonlinear partial differential equations in less time with minimal computational time. [4-6]. The 

method has been applied successfully to various problems in engineering and science. Khuri and Alchikh [7] 

explored Pade approximation to the solution obtained using LADM to increase its convergence. The 

approximate solution of a class of nonlinear ordinary differential equation was investigated by Khuri et al [8]. 

Yusofoglu et al [9] examined the Duffing equation using the Laplace Adomian decomposition method. Nasser 

[10] successively applied LADM to solve the Falker-Skan equation and obtain a series of rapidly converging 
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solution. Ongun [11] solved the HIV infection model of CD4+T cells using LADM. He constructed an 

analytical solution in the form of polynomial. Pue-on [12] investigated the Newell-Whitehead-Segel equation 

using the Laplace Adomian decomposition method. The method was shown to have the capacity to solve both 

linear and nonlinear functional equation Cherruault [13]. Solution of the systems of ordinary differential 

equation by combined Laplace Adomian decomposition method was examined by Dogan [14]. Also, the 

combined Laplace Adomian decomposition method is explored in the following literatures: Linear and nonlinear 

Volterra Integral equations with weak kernel Hendi [15], Volterra Integro-differential equations wazwaz [16], 

Approximate solution of nonlinear fractional differential equations Yang et al [43], nth-order Integro-differential 

equation by Waleed [17] and Manafianheris [18]. Numerical solution of the nonlinear system of partial 

differential equation has been treated with LADM-Pade by Mohamed et al [19], two-dimensional viscous fluid 

with shrinking sheet by Kamara et al [20], nonlinear coupled partial differential equation Jafari et al [48], 

Numerical solution to logistics differential equation Khan et al. [21], convection diffusion-dissipation equations 

by Youssouf et al. [22] 

In this manuscript, our main objective is to explore the Laplace Adomian decomposition method 

(LADM) to obtain a series solution of the Crime deterrence model. This has not been studied before to the best 

of our knowledge. The Pade approximation is then applied to the analytical solution obtained for the parameters 

of interest to get a better approximation that best match its Taylor series expansion.  

The paper is organised as follows: In section 2, the fundamentals of the Adomian decomposition 

method is explained in detail. The basic procedures of the hybrid Laplace Adomian decomposition method are 

presented in section 3. Section 4 explained the Pade approximation which best approximates the solution 

obtained using the LADM. Numerical application of LADM as it applies to the model, results as well as 

discussions in figures and tables are contained in section 5 & 6, whereas, the conclusions are given in the final 

part, section 7. 

 

II. FUNDAMENTALS OF ADOMIAN DECOMPOSITION METHOD (ADM) 
In this section, we review the basics of the standard Adomian decomposition method. See [23-33] 

Consider a generalized differential equation of the form 

𝐿[𝑦(𝑥)] + 𝑅[𝑦(𝑥)] + 𝑁[𝑦(𝑥)] = 𝑔(𝑥)                                                                     (3) 

Where 𝐿 is the highest order derivative that’s invertible, 𝑅 is the remainder of the linear differential operator, 𝑁 

is a nonlinear term and 𝑔(𝑥) is called the source term 

Suppose the differential operator is invertible, such that 𝐿−1 = ∫ (. )𝑑𝑥
𝑥

0
, then operating both sides of Eq. (3) 

with the inverse operator, we obtain 

𝐿−1[𝐿𝑦(𝑥)] + 𝐿−1[𝑅𝑦(𝑥)] + 𝐿−1[𝑁𝑦(𝑥)] = 𝐿−1[𝑔(𝑥)]                                            (4) 

𝐿−1[𝐿𝑦(𝑥)] = 𝜙(𝑥) − 𝐿−1[𝑅𝑦(𝑥)] − 𝐿−1[𝑁𝑦(𝑥)] 
𝐿−1[𝐿𝑦(𝑥)] = 𝜙(𝑥) − 𝐿−1[𝑅𝑦(𝑥) − 𝑁𝑦(𝑥)]                     (5) 

𝑦(𝑥) = 𝑓(𝑥) − 𝐿−1[𝑅𝑦(𝑥) − 𝑁𝑦(𝑥)]                     (6) 

Where 𝑓(𝑥) is the term obtained from the integration of the source term, 𝑔(𝑥) defined as 

  𝜙0(𝑥) =

{
  
 

  
 𝑢(0)                                                                               𝐿 =

𝑑

𝑑𝑡
  

𝑢(0) + 𝑥𝑢′(0)                                                             𝐿 =
𝑑2

𝑑𝑥2

𝑢(0) + 𝑥𝑢′(0) +
𝑥2

2
𝑢′′(0)                                        𝐿 =

𝑑3

𝑑𝑥3

𝑢(0) + 𝑥𝑢′(0) +
𝑥2

2
𝑢′′(0) +

𝑥3

3!
𝑢′′′(0)                 𝐿 =

𝑑4

𝑑𝑥4

      (7) 

 By the ADM hypothesis, the zeroth component of Eq. (6) become 

𝑦0 = 𝑓(𝑥)                       (8) 

The recursive scheme of the problem is then given by 

{
 
 

 
 𝑦𝑘+1 = −𝐿

−1(𝑅𝑦𝑛) − 𝐿
−1(𝑁𝑦𝑛),   𝑛 ≥ 0

𝑦1 = −𝐿
−1(𝑅𝑦0) − 𝐿

−1(𝑁𝑦0)

𝑦2 = −𝐿
−1(𝑅𝑦1) − 𝐿

−1(𝑁𝑦1)

𝑦3 = −𝐿
−1(𝑅𝑦2) − 𝐿

−1(𝑁𝑦2)

                                                    (9) 

Decomposing the unknown solution in the form of an infinite series 

𝑦(𝑥) = ∑ 𝑦𝑛(𝑥)
∞
𝑛=0                                                                                          10) 

The nonlinear term is determined by an infinite series of Adomian polynomials as follows 

𝑁(𝑦) = ∑ 𝐴𝑛(𝑦0, 𝑦1, 𝑦2 , … )
∞
𝑛=0                                                (11) 

Where the 𝐴′𝑠 are calculated by the relation 

𝐴𝑛(𝑦0, 𝑦1, 𝑦2, … ) =
1

𝑛!

𝑑𝑛

𝑑𝜆𝑛
[𝑁(∑ 𝜆𝑘𝑦𝑘

𝑛
𝑘=0 )]𝜆=0, 𝑛 = 0,1,2,3                              (12) 

Using the general formula in Eq. (12), the Adomian polynomials 𝐴𝑛
′𝑠 are obtained as follows 
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𝐴1 =
𝑑

𝑑𝜆
𝑁(𝑢0 + 𝑢1𝜆)|

𝜆=0
= 𝑁(𝑢0)𝑢1 

𝐴2 =
1

2!

𝑑

𝑑𝜆
(𝑢1 + 2𝑢2𝜆)𝑁

′′(𝑢0 + 𝑢1𝜆)|
𝜆=0

= 𝑁′(𝑢0)𝑢2 +
1

2!
𝑁′′(𝑢0)𝑢1

2 

𝐴3 = 𝑁
′(𝑢0)𝑢3 +

2

2!
𝑁′′(𝑢0)𝑢1𝑢2 +

1

3!
𝑁′′′(𝑢0)𝑢1

3 

𝐴4 = 𝑁
′(𝑢0)𝑢4 +

1

2!
𝑁′′(𝑢0)(2𝑢1𝑢3 + 𝑢2

2) +
3

3!
𝑁′′′(𝑢0)𝑢1

2𝑢2 +
1

4!
𝑁(𝑖𝑣)(𝑢0)𝑢1

4 

𝐴5 = 𝑁′(𝑢0)𝑢5 +
1

2!
𝑁′′(𝑢0)(2𝑢1𝑢4 + 2𝑢2𝑢3) +

1

3!
𝑁′′′(𝑢0)(3𝑢1

2𝑢3 + 3𝑢1𝑢2
2) +

4

4!
𝑁(𝑖𝑣)(𝑢0)𝑢1

3𝑢2

+
1

5!
𝑁(𝑣)(𝑢0)𝑢1

5 

𝐴6 = 𝑁′(𝑢0)𝑢6 +
1

2!
𝑁′′(𝑢0)(2𝑢1𝑢4 + 2𝑢2𝑢3) +

1

3!
𝑁′′′(𝑢0)(3𝑢1

2𝑢3 + 3𝑢1𝑢2
2) +

4

4!
𝑁(𝑖𝑣)(𝑢0)𝑢1

3𝑢2

+
1

5!
𝑁(𝑣)(𝑢0)𝑢1

5 

𝐴7 = 𝑁′(𝑢0)𝑢7 +
1

2!
𝑁′′(𝑢0)(2𝑢1𝑢4 + 2𝑢2𝑢3) +

1

3!
𝑁′′′(𝑢0)(3𝑢1

2𝑢3 + 3𝑢1𝑢2
2) +

4

4!
𝑁(𝑖𝑣)(𝑢0)𝑢1

3𝑢2

+
1

5!
𝑁(𝑣)(𝑢0)𝑢1

5 

Hence using Eqs. (9-11), the decomposed equation of the problem become 

∑𝑦𝑛(𝑥) =

∞

𝑛=0

𝑓(𝑥) −∑𝐿−1(𝑦𝑛(𝑥)) −∑𝐿−1𝑁(𝐴𝑛)

∞

𝑛=0

∞

𝑛=0

 

Replacing 𝑛 by 𝑛 + 1 on both sides of the above, we get  

∑ 𝑦𝑛+1(𝑥) =

∞

𝑛=−1

𝑓(𝑥) −∑𝐿−1(𝑦𝑛(𝑥)) −∑𝐿−1𝑁(𝐴𝑛)

∞

𝑛=0

∞

𝑛=0

 

𝑦0(𝑥) + ∑ 𝑦𝑛+1(𝑥) = 𝑓(𝑥) − ∑ [𝐿−1(𝑦𝑛(𝑥)) − ∑ 𝐿−1𝑁(𝐴𝑛)
∞
𝑛=0 ]∞

𝑛=0
∞
𝑛=0                               (13) 

Comparing the above series on both sides of the equation and taking finite terms, the solution become 

𝑦(𝑥) ≈ ∑ 𝑦𝑛(𝑥)
𝑁
𝑛=0                                                                           (14) 

Similarly, if we take infinite number of terms, the solution become 

𝑦(𝑥) = lim
𝑁→∞

∑ 𝑦𝑛(𝑥)
𝑁
𝑛=0                                                                             (15) 

 

III. LAPLACE ADOMIAN DECOMPOSITION METHOD (LADM) 
To illustrate the basics of the Laplace Adomian decomposition method denoted LADM, we consider the 

nonlinear functional differential equation in Eq. (3). See [34-36] 

𝐿𝑡𝑢(𝑥) + 𝑅(𝑢(𝑥)) + 𝑁(𝑢(𝑥)) = 𝑔(𝑥)                                (16) 

Subject to the corresponding initial condition as 

𝑢(𝑥, 0) = 𝜙(𝑥)                                  (17) 

Where 𝐿𝑡 , 𝑁, 𝑅 and 𝑔(𝑥) denotes the first-order differential operator, nonlinear operator, remainder of the linear 

operator and source term, respectively 

Taking Laplace transform of both sides of Eq. (16), we obtain 

ℒ[𝐿𝑡𝑢(𝑥)] + ℒ[𝑅(𝑢(𝑥))] + ℒ[𝑁(𝑢(𝑥))] = ℒ[𝑔(𝑥)]                                             (18) 

Suppose 𝐿𝑡 is a first order differential operator, then the inverse operator exists such that 

𝐿𝑡 =
𝑑

𝑑𝑥
, 𝐿−1 = ∫ (. )𝑑𝑥

𝑥

0

 

Implementing LT on Eq. (18) yield an algebraic system of the form 

ℒ[𝐿𝑡𝑢(𝑥)] =  ℒ[𝑔(𝑥)] − ℒ[𝑅(𝑢(𝑥))] − ℒ[𝑁(𝑢(𝑥))]                                             (19) 

𝑠ℒ[𝑢(𝑥)] − 𝜙(𝑥) = −ℒ[𝑅(𝑢(𝑥))] − ℒ[𝑁(𝑢(𝑥))] + ℒ[𝑔(𝑥)] 

Rearranging the above, we obtain the algebraic equation of the form 

ℒ[𝑢(𝑥)] =
𝜙(𝑥)

𝑠
+

ℒ[𝑔(𝑥)]

𝑠
−

ℒ[𝑅(𝑢(𝑥))]

𝑠
−

ℒ[𝑁(𝑢(𝑥))]

𝑠
                               (20) 

Representing the unknown as a decomposition series in Eq. (18), we get 

ℒ[∑ 𝑢𝑛(𝑥)
∞
𝑛=0 ] =

𝜙(𝑥)

𝑠
+

ℒ[𝑔(𝑥)]

𝑠
−

ℒ[𝑅(𝑢(𝑥))]

𝑠
−

ℒ[∑ 𝐴𝑛
∞
𝑛=0 ]

𝑠
                              (21) 

Using Eq. (20), the recursive formula for the above become 

ℒ[𝑢0] =
𝜙(𝑥)

𝑠
+

ℒ[𝑔(𝑥)]

𝑠
                                                (22) 
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ℒ[𝑢𝑘+1] = −
ℒ[𝑅(𝑢(𝑥))]

𝑠
−

ℒ[𝐴𝑛]

𝑠
                                (23) 

Taking the inverse Laplace transform of Eq. (19) yield the required result of the problem in the spatial domain. 

 

IV. THE PADE APPROXIMANT 
Frequently in science and engineering, the solution of several mathematical functions is expressed 

using Taylor series expansion. Among these functions, polynomials are widely used to find the approximation 

of truncated power series. This is useful, because polynomials never blow up and their singularities are not 

apparent in a finite region. However, polynomials exhibit oscillations that produce error bound since their radius 

of convergence cannot contain two boundaries at a time. For this reason, power series may not always be useful 

to approximate a function. To manipulate the power series for better approximations to the obtained series, a 

new approximation that best matches the Taylor series as far as possible was proposed by Henri Eugene Pade in 

1892 [37-42]. This new approximation is advantageous over the Taylor series in that using a quotient of two 

polynomials with varying degrees, the inherent errors obtained using Taylor series are improved upon for fast 

convergence. 

Suppose there exists a differentiable function 𝑦(𝑥), then the Taylors series expansion of the function near a 

point 𝑥 = 𝑎 is given by the expression 

𝑦(𝑥) = 𝑦(𝑎) + (𝑥 − 𝑎)
𝑑𝑦

𝑑𝑥
|
𝑥=𝑎

+
(𝑥−𝑎)2

2!

𝑑2𝑦

𝑑𝑥2
|
𝑥=𝑎

+
(𝑥−𝑎)3

3!

𝑑3𝑦

𝑑𝑥3
|
𝑥=𝑎

+⋯+
(𝑥−𝑎)𝑛

𝑛!

𝑑𝑛𝑦

𝑑𝑥𝑛
|
𝑥=𝑎

+⋯           (24) 

Thus, a Pade Approximation to a differentiable function, 𝑓(𝑥) on a closed interval [𝑎, 𝑏] is the ratio of two 

polynomials constructed from the coefficients of the Taylor series expansion of the function. Following Momani 

[43], the  [𝑀 𝑁⁄ ]  Pade approximant to a function is given by 

[𝑀 𝑁⁄ ]𝑓(𝑥) =
𝑃𝑀(𝑥)

𝑄𝑁(𝑥)
=

∑ 𝑎𝑛𝑥
𝑛𝑀

𝑛=0

1+∑ 𝑏𝑛𝑥
𝑛𝑁

𝑛=1
=

𝑎0+𝑎1𝑥+𝑎2𝑥
2+⋯𝑎𝑀𝑥

𝑀

1+𝑏1𝑥+𝑏2𝑥
2+⋯𝑏𝑁𝑥

𝑁                               (25) 

Where 𝑃𝑀(𝑥), 𝑃𝑁(𝑥) are the polynomials of degree at most 𝑀 and 𝑁 

𝑄𝑁(0) = 1                     (26) 

The central idea behind the Pade Approximation is to replace the power series  

   𝑦(𝑥) = ∑ 𝑎𝑛𝑥
𝑛∞

𝑛=0  

By a ratio of two polynomials. The error in the approximation is such that 

𝑦(𝑥) − 𝑓(𝑥) = 𝑂(𝑋𝑀+𝑁+1) 

𝑦(𝑥) −
𝑃𝑀(𝑥)

𝑄𝑁(𝑥)
= 𝑂(𝑋𝑀+𝑁+1), (𝑥 → 0)                                              (27) 

Multiplying the numerator and denominator by a constant and using the normalization condition in Eq. (27). 

Next, 𝑃𝑀(𝑥) and 𝑄𝑁(𝑥) have common factor such that 

𝑃𝑀(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 +⋯+ 𝑎𝑀𝑥

𝑀

𝑄𝑁(𝑥) = 𝑏0 + 𝑏1𝑥 + 𝑏2𝑥
2 +⋯+ 𝑏𝑁𝑥

𝑁 }                                (28) 

To linearize the coefficient equation above, we multiply both sides of Eq. (28) by 𝑄𝑁(𝑥), using Eqs (27) and 

(24). 

Writing Eq. (23) in rearranged form, we obtain 
𝑎𝑀+1 + 𝑎𝑀𝑥1 +⋯+ 𝑎𝑁−𝑀+1𝑥𝑀 = 0
𝑎𝑀+2 + 𝑎𝑀+1𝑥1 +⋯+ 𝑎𝑀−𝑁+2𝑥𝑀 = 0
………………………………………… . .
𝑎𝑀+𝑁 + 𝑎𝑀+𝑁−1𝑥1 +⋯+ 𝑎𝑀𝑥𝑁 = 0

}                                (29)

       
𝑎0 = 𝑀0

𝑎0 + 𝑎0𝑁1 = 𝑀1

𝑎2 + 𝑎1𝑁1 + 𝑎0𝑁2 = 𝑀1

…………………………
𝑎𝑀 + 𝑎𝑀−1𝑁1 +⋯+ 𝑎0𝑁𝑀 = 𝑀𝑁}

 
 

 
 

                   (30) 

Solving the set of equations in (29) and (30) for 𝑀𝑠 and 𝑁𝑠, the coefficients of 𝑃𝑀(𝑥) and 𝑄𝑁(𝑥) are easily 

determined. Then the Pade approximant is obtained using the relation 

 

[𝑀 𝑁⁄ ] =

𝐷𝑒𝑡[

𝑎𝑀−𝑁+1 𝑎𝑀−𝑁+2… 𝑎𝑀+1
⋮ ⋮ ⋮
𝑎𝑀

∑ 𝑎𝑖−𝑀𝑥
𝑖𝑀

𝑖=𝑁

𝑎𝑀+1

∑ 𝑎𝑖−𝑁+1𝑥
𝑖𝑀

𝑖=𝑁−1

𝑎𝑀+𝑁

∑ 𝑎𝑖𝑥
𝑖𝑀

𝑖=0

]

𝐷𝑒𝑡[

𝑎𝑀−𝑁+1 𝑎𝑀−𝑁+2… 𝑎𝑀+1
⋮ ⋮ ⋮
𝑎𝑀
𝑥𝑁

𝑎𝑀+1…

𝑥𝑁−1…

𝑎𝑀+𝑁
1

]

                                              (31)

      

The diagonal Pade Approximants of different orders such as [2 2⁄ ], [3 3⁄ ], [4 4⁄ ], [5 5⁄ ] are obtained using 

symbolic programming software Mathematica. 
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V. NUMERICAL APPLICATION 
In this section, we apply the Laplace Adomian decomposition to the crime deterrence model under 

investigation in order to seek solutions to the governing parameters subject to the initial conditions. The 

efficiency of the method is confirmed by the ease with which the solution is obtain. The result obtained when 

compared to literature is accurate and elegant. 

Applying Laplace transform to both sides of Eq. (1), yield the following 

ℒ {
𝑑𝑆

𝑑𝑡
} = ℒ{(1 − 𝜌(𝑃))𝐴} − ℒ {

𝛽𝑆𝐶

𝑁
} + ℒ{𝜃𝑣𝑅} − ℒ{𝑑𝑆} 

ℒ {
𝑑𝐶

𝑑𝑡
} = ℒ{(𝜌(𝑃))𝐴} + ℒ {

𝛽𝑆𝐶

𝑁
} − ℒ {

𝛾𝐶𝑃

𝑁
} + ℒ{(1 − 𝜃)𝑣𝑅} − ℒ{(𝛼 + 𝑑)𝐶}                                     (32) 

ℒ {
𝑑𝑅

𝑑𝑡
} = ℒ {

𝛾𝐶𝑃

𝑁
} − ℒ{𝑣𝑅} − ℒ{𝑑𝑅} 

ℒ {
𝑑𝑃

𝑑𝑡
} = ℒ{𝜙𝐶} − ℒ{𝜙0(𝑃 − 𝑃0)} 

Applying the formula for Laplace Transforms, we obtain the above equation in the form 

𝑤ℒ{𝑆} − 𝑆(0) =  ℒ{(1 − 𝜌(𝑃))𝐴} − ℒ {
𝛽𝑆𝐶

𝑁
} + ℒ{𝜃𝑣𝑅} − ℒ{𝑑𝑆} 

             𝑤ℒ{𝐶} − 𝐶(0) = ℒ{(𝜌(𝑃))𝐴} + ℒ {
𝛽𝑆𝐶

𝑁
} − ℒ {

𝛾𝐶𝑃

𝑁
} + ℒ{(1 − 𝜃)𝑣𝑅} − ℒ{(𝛼 + 𝑑)𝐶} 

𝑤ℒ{𝑅} − 𝑅(0) =  ℒ {
𝛾𝐶𝑃

𝑁
} − ℒ{𝑣𝑅} − ℒ{𝑑𝑅}                                 (33) 

𝑤ℒ{𝑃} − 𝑃(0) = ℒ{𝜙𝐶} − ℒ{𝜙0(𝑃 − 𝑃0)} 
Using the initial conditions in Eq. (2), the above equations are reduced to  

𝑤ℒ{𝑆} − 𝑆(0) =  ℒ{(1 − 𝜌(𝑃))𝐴} − ℒ {
𝛽𝑆𝐶

𝑁
} + ℒ{𝜃𝑣𝑅} − ℒ{𝑑𝑆} 

𝑤ℒ{𝐶} − 𝐶(0) = ℒ{(𝜌(𝑃))𝐴} + ℒ {
𝛽𝑆𝐶

𝑁
} − ℒ {

𝛾𝐶𝑃

𝑁
} + ℒ{(1 − 𝜃)𝜈𝑅} − ℒ{(𝛼 + 𝑑)𝐶} 

𝑤ℒ{𝑅} − 𝑅(0) =  ℒ {
𝛾𝐶𝑃

𝑁
} − ℒ{𝑣𝑅} − ℒ{𝑑𝑅}                                               (34) 

𝑤ℒ{𝑃} − 𝑃(0) = ℒ{𝜙𝐶} − ℒ{𝜙0(𝑃 − 𝑃0)} 
 

𝑤ℒ{𝑆} = 𝑆0 + 
(1 − 𝜌(𝑃))𝐴

𝑤
−

𝛽

𝑁𝑤
ℒ{𝑆𝐶} +

𝜃𝜈

𝑤
ℒ{𝑅} −

𝑑

𝑤
ℒ{𝑆} 

𝑤ℒ{𝐶} = 𝐶0 +
𝜌(𝑃)𝐴

𝑤
+

𝛽

𝑁𝑤
ℒ{𝑆𝐶} −

𝛾

𝑁𝑤
ℒ{𝐶𝑃} +

(1 − 𝜃)𝜈

𝑤
ℒ{𝑅} +

(𝛼 + 𝑑)

𝑤
ℒ{𝐶} 

𝑤ℒ{𝑅} = 𝑅0 + 
𝛾

𝑁𝑤
ℒ{𝐶𝑃} − (

𝜈+𝑑

𝑤
)ℒ{𝑅}                                                       (35) 

𝑤ℒ{𝑃} = 𝑃0 +
𝜙

𝑤
ℒ{𝐶} −

𝜙0
𝑤
ℒ{𝑃} +

𝜙0𝑃0
𝑤

 

 

Rearranging the above, we obtain 

ℒ{𝑆} =
𝑆0
𝑤
+ 
(1 − 𝜌(𝑃))𝐴

𝑤2
−

𝛽

𝑁𝑤2
ℒ{𝑆𝐶} +

𝜃𝜈

𝑤2
ℒ{𝑅} −

𝑑

𝑤2
ℒ{𝑆} 

ℒ{𝐶} =
𝐶0
𝑤
+
𝜌(𝑃)𝐴

𝑤2
+

𝛽

𝑁𝑤2
ℒ{𝑆𝐶} −

𝛾

𝑁𝑤2
ℒ{𝐶𝑃} +

(1 − 𝜃)𝜈

𝑤2
ℒ{𝑅} +

(𝛼 + 𝑑)

𝑤2
ℒ{𝐶} 

ℒ{𝑅} =
𝑅0

𝑤
+ 

𝛾

𝑁𝑤2
ℒ{𝐶𝑃} − (

𝜈+𝑑

𝑤2
) ℒ{𝑅}                                                       (36) 

ℒ{𝑃} =
𝑃0
𝑤
+
𝜙

𝑤2
ℒ{𝐶} −

𝜙0
𝑤2

ℒ{𝑃} +
𝜙0𝑃0
𝑤2

 

 

Where 𝑋 = 𝑆𝐶, 𝑌 = 𝐶𝑃                                     (37) 

Next, we decompose the parameters of interest, 𝑆, 𝐶, 𝑅, 𝑃 as an infinite series of the form 

 

𝑆 = ∑ 𝑆𝑛 , 𝐶 = ∑ 𝐶𝑛, 𝑅 = ∑ 𝑅𝑛, 𝑃 = ∑ 𝑃𝑛
∞
𝑛=0

∞
𝑛=0

∞
𝑛=0  ∞

𝑛=0                                 (38) 

 

Where the terms 𝑆𝑛 , 𝐶𝑛, 𝑅𝑛, 𝑃𝑛 are to be recursively determined 

Similarly, the nonlinear terms, 𝑋 and 𝑌 are decomposed as follows 

𝑋 = ∑ 𝑋𝑛 , 𝑌 = ∑ 𝑌𝑛
∞
𝑛=0

∞
𝑛=0                       (39) 

Where 𝑋𝑛 and 𝑌𝑛 are the so-called Adomian polynomials 

The first seven of these polynomials are given below 
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𝑋0 = 𝑆0𝐶0 

𝑋1 = 𝑆0𝐶1 + 𝑆1𝐶0  

𝑋2 = 𝑆0𝐶2 + 𝑆1𝐶1 + 𝑆2𝐶0 

𝑋3 = 𝑆0𝐶3 + 𝑆1𝐶2 + 𝑆2𝐶1 + 𝑆3𝐶0                                                              (40) 

𝑋4 = 𝑆0𝐶4 + 𝑆1𝐶3 + 𝑆2𝐶2 + 𝑆3𝐶1 + 𝑆4𝐶0 

𝑋5 = 𝑆0𝐶5 + 𝑆1𝐶4 + 𝑆2𝐶3 + 𝑆3𝐶2 + 𝑆4𝐶1 + 𝑆5𝐶0 

𝑋6 = 𝑆0𝐶6 + 𝑆1𝐶5 + 𝑆2𝐶4 + 𝑆3𝐶3 + 𝑆4𝐶2 + 𝑆5𝐶1 + 𝑆6𝐶0 

𝑋7 = 𝑆0𝐶7 + 𝑆1𝐶6 + 𝑆2𝐶5 + 𝑆3𝐶4 + 𝑆4𝐶3 + 𝑆5𝐶2 + 𝑆6𝐶1 + 𝑆7𝐶0 

 

𝑌0 = 𝐶0𝑃0 

𝑌1 = 𝐶0𝑃1 + 𝐶1𝑃0  

𝑌2 = 𝐶0𝑃2 + 𝐶1𝑃1 + 𝐶2𝑃0 

𝑌3 = 𝐶0𝑃3 + 𝐶1𝑃2 + 𝐶2𝑃1 + 𝐶3𝑃0                                                          (41) 

𝑌4 = 𝐶0𝑃4 + 𝐶1𝑃3 + 𝐶2𝑃2 + 𝐶3𝑃1 + 𝐶4𝑃0 

𝑌5 = 𝐶0𝑃5 + 𝐶1𝑃4 + 𝐶2𝑃3 + 𝐶3𝑃2 + 𝐶4𝑃1 + 𝐶5𝑃0 

𝑌6 = 𝐶0𝑃6 + 𝐶1𝑃5 + 𝐶2𝑃4 + 𝐶3𝑃3 + 𝐶4𝑃2 + 𝐶5𝑃1 + 𝐶6𝑃0 

𝑌7 = 𝐶0𝑃7 + 𝐶1𝑃6 + 𝐶2𝑃5 + 𝐶3𝑃4 + 𝐶4𝑃3 + 𝐶5𝑃2 + 𝐶6𝑃1 + 𝐶7𝑃0 

 

Substituting Eqs. (38) and (39) into Eq. (36), we obtain reduced equation of the form 

 

ℒ {∑𝑆𝑛

∞

𝑛=0

} =
𝑆0
𝑤
+ 
(1 − 𝜌(𝑃))𝐴

𝑤2
−

𝛽

𝑁𝑤2
ℒ {∑𝑋𝑛

∞

𝑛=0

} +
𝜃𝜈

𝑤2
ℒ {∑𝑅𝑛

∞

𝑛=0

} −
𝑑

𝑤2
ℒ {∑𝑆𝑛

∞

𝑛=0

} 

ℒ {∑𝐶𝑛

∞

𝑛=0

} =
𝐶0
𝑤
+
𝜌(𝑃)𝐴

𝑤2
+

𝛽

𝑁𝑤2
ℒ {∑𝑋𝑛

∞

𝑛=0

} −
𝛾

𝑁𝑤2
ℒ{𝑌𝑛} +

(1 − 𝜃)𝜈

𝑤2
ℒ {∑𝑅𝑛

∞

𝑛=0

} +
(𝛼 + 𝑑)

𝑤2
ℒ {∑𝐶𝑛

∞

𝑛=0

} 

ℒ{∑ 𝑅𝑛
∞
𝑛=0 } =

𝑅0

𝑤
+ 

𝛾

𝑤2𝑁
ℒ{∑ 𝑌𝑛

∞
𝑛=0 } − (

𝜈+𝑑

𝑤2
) ℒ{∑ 𝑅𝑛

∞
𝑛=0 }                                               (42) 

ℒ {∑𝑃𝑛

∞

𝑛=0

} =
𝑃0
𝑤
+
𝜙

𝑤2
ℒ {∑𝐶𝑛

∞

𝑛=0

} −
𝜙0
𝑤2

ℒ {∑𝑃𝑛

∞

𝑛=0

} +
𝜙0𝑃0
𝑤2

 

 

Matching the two sides of Eq. (42) yield the following iterative algorithm 

 

ℒ{𝑆0} =
𝑆0
𝑤
+
(1 − 𝜌(𝑃))𝐴

𝑤2
 

ℒ{𝑆1} = −
𝛽

𝑤2𝑁
ℒ{𝑋0} +

𝜃𝜈

𝑤2
ℒ{𝑅0} −

𝑑

𝑤2
ℒ{𝑆0} 

ℒ{𝑆2} = −
𝛽

𝑤2𝑁
ℒ{𝑋1} +

𝜃𝜈

𝑤2
ℒ{𝑅1} −

𝑑

𝑤2
ℒ{𝑆1}                                 (43) 

ℒ{𝑆3} = −
𝛽

𝑤2𝑁
ℒ{𝑋2} +

𝜃𝜈

𝑤2
ℒ{𝑅2} −

𝑑

𝑤2
ℒ{𝑆2} 

 ……………………………………………………. 

ℒ{𝑆𝑛+1} = −
𝛽

𝑤2𝑁
ℒ{𝑋𝑛} +

𝜃𝜈

𝑤2
ℒ{𝑅𝑛} −

𝑑

𝑤2
ℒ{𝑆𝑛} 

 

ℒ{𝐶0} =
𝐶0
𝑤
+
𝜌(𝑃)𝐴

𝑤2
 

ℒ{𝐶1} =
𝛽

𝑤2𝑁
ℒ{𝑋0} −

𝛾

𝑤2𝑁
ℒ{𝑌0} +

(𝛼 + 𝑑)

𝑤2
ℒ{𝐶0} +

(1 − 𝜃)

𝑤2
 ℒ{𝑅0} 

 

ℒ{𝐶2} =
𝛽

𝑤2𝑁
ℒ{𝑋1} −

𝛾

𝑤2𝑁
ℒ{𝑌1} +

(𝛼+𝑑)

𝑤2
ℒ{𝐶1}                                 (44) 

 

ℒ{𝐶3} =
𝛽

𝑤2𝑁
ℒ{𝑋2} −

𝛾

𝑤2𝑁
ℒ{𝑌2} +

(𝛼 + 𝑑)

𝑤2
ℒ{𝐶2} 

…………………………………………………………. 

ℒ{𝐶𝑛+1} =
𝛽

𝑤2𝑁
ℒ{𝑋𝑛} −

𝛾

𝑤2𝑁
ℒ{𝑌𝑛} +

(𝛼 + 𝑑)

𝑤2
ℒ{𝐶𝑛} +

(1 − 𝜃)

𝑤2
ℒ{𝑅𝑛} 
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ℒ{𝑅0} =
𝑅0
𝑤

 

ℒ{𝑅1} =
𝛾

𝑤2𝑁
ℒ{𝑌0} − (

𝜈 + 𝑑

𝑤2
) ℒ{𝑅0} 

 

ℒ{𝑅2} =
𝛾

𝑤2𝑁
ℒ{𝑌1} − (

𝜈+𝑑

𝑤2
) ℒ{𝑅1}                                                 (45) 

ℒ{𝑅3} =
𝛾

𝑤2𝑁
ℒ{𝑌2} − (

𝜈 + 𝑑

𝑤2
) ℒ{𝑅2} 

…………………………………………… 

ℒ{𝑅𝑛+1} =
𝛾

𝑤2𝑁
 ℒ{𝑌𝑛} − (

𝜈+𝑑

𝑤2
) ℒ{𝑅𝑛} 

 

ℒ{𝑃0} =
𝑃0
𝑤
+
𝜙0𝑃0
𝑤2

 

ℒ{𝑃1} =
𝜙

𝑤2
 ℒ{𝐶0} −

𝜙0
𝑤2

 ℒ{𝑃0} 

ℒ{𝑃2} =
𝜙

𝑤2
 ℒ{𝐶1} −

𝜙0

𝑤2
 ℒ{𝑃1}                                   (46) 

 

ℒ{𝑃3} =
𝜙

𝑤2
 ℒ{𝐶2} −

𝜙0
𝑤2

 ℒ{𝑃2} 

……………………………………. 

ℒ{𝑃𝑛+1} =
𝜙

𝑤2
 ℒ{𝐶𝑛} −

𝜙0
𝑤2

 ℒ{𝑃𝑛} 

Taking the inverse Laplace transform to the first equations in Eqs. (43)-(46), we get 

 

ℒ{𝑆0} =
𝑆0

𝑤
+

(1−𝜌(𝑃))𝐴

𝑤2
,  

ℒ{𝐶0} =
𝐶0

𝑤
+

𝜌(𝑃)𝐴

𝑤2
                       (47) 

ℒ{𝑅0} =
𝑅0
𝑤

 

ℒ{𝑃0} =
𝑃0
𝑤
+
𝜙0𝑃0
𝑤2

 

 

Substitution the values of 𝑆0, 𝐶0, 𝑅0 and 𝑃0 into the first iterates below give the solutions as  

 

ℒ{𝑆1} = −
𝛽

𝑤2𝑁
ℒ{𝑋0} +

𝜃𝜈

𝑤2
ℒ{𝑅0} −

𝑑

𝑤2
ℒ{𝑆0} 

ℒ{𝐶1} =
𝛽

𝑤2𝑁
ℒ{𝑋0} −

𝛾

𝑤2𝑁
ℒ{𝑌0} +

(𝛼 + 𝑑)

𝑤2
ℒ{𝐶0} +

(1 − 𝜃)

𝑤2
ℒ{𝑅0} 

 

ℒ{𝑅1} =
𝛾

𝑤2𝑁
ℒ{𝑌0} − (

𝜈+𝑑

𝑤2
) ℒ{𝑅0}                                                 (48) 

ℒ{𝑃1} =
𝜙

𝑤2
 ℒ{𝐶0} −

𝜙0
𝑤2

 ℒ{𝑃0} 

 

ℒ{𝑆1} = −
𝛽

𝑤2𝑁
[(
𝑆0+(1−𝜌(𝑃))𝐴

𝑤
) (

𝐶0+𝜌(𝑃)𝐴

𝑤
)] +

1

𝑤2
[𝜃𝜈𝑅0 − 𝑑 (

𝑆0+(1−𝜌(𝑃)𝐴)

𝑤
)]                  (49) 

 

ℒ{𝐶1} =
1

𝑤2𝑁
(
𝐶0+𝜌(𝑃)𝐴

𝑤
) [

𝛽

𝑤
(𝑆0 + (1 − 𝜌(𝑃)𝐴)) −

𝛾

𝑤
(𝐶0 + 𝜌(𝑃)𝐴)] +

(1−𝜃)𝜈𝑅0

𝑤2
+ (

𝛼+𝑑

𝑤2
) (

𝐶0+𝜌(𝑃)𝐴

𝑤
) 

                          (50) 

ℒ{𝑅1} =
𝛾𝑃0

𝑤2𝑁
(
𝐶0+𝜌(𝑃)𝐴

𝑤
) (

1+𝜙0

𝑤
) −

𝑅0

𝑤2
(𝜈 + 𝑑)       (51) 

 

ℒ{𝑃1} =
𝜙

𝑤2
(
𝐶0+𝜌(𝑃)𝐴

𝑤
) −

𝜙0𝑃0

𝑤2
(
1+𝜙0

𝑤
)        (52) 

 

Evaluating the Laplace transform of Eqs. (49)-(52) and taking their inverse Laplace transform, we obtain the 

first approximate solutions, 𝑆1(𝑡), 𝐶1(𝑡), 𝑅1(𝑡) and 𝑃1(𝑡). Similarly, the subsequent solutions of the parameters 

of interest,  𝑆2(𝑡), 𝑆3(𝑡), … , 𝑆𝑛(𝑡), 𝐶2(𝑡), 𝐶3(𝑡), … , 𝐶𝑛(𝑡), 𝑅2(𝑡), 𝑅3(𝑡), … , 𝑅𝑛(𝑡),  
𝑃2(𝑡), 𝑃3(𝑡), … , 𝑝𝑛(𝑡) are obtained recursively using Eqs. (49)-(52). 
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Now to obtain the solution of the parameters of interest in explicit form, we apply the LADM to the model by 

taking the following values via simulation. 𝑆(0) = 𝑆0 = 1, 𝐶(0) = 𝐶0 = 1, 𝑅(0) = 𝑅0 = 1, 𝑃(0) = 𝑃0 = 1 for 

the four components in the model. Next, we set 𝛼 = 0.2, 𝛽 = 0.8, 𝛾 = 0.4, 𝜇 = 0.3, 𝜌 = 0.4, 𝜙 = 1.5, 𝜙0 =
0.25, 𝜌(𝑃) = 0.9, 𝐴 = 100, 𝜃 = 0.5, 𝜈 = 0.05, 𝐷 = 2, 𝜙 = 1.5, 𝑁 = 1000. We obtain the first few 

approximations for the parameters, 𝑆(𝑡), 𝐶(𝑡), 𝑅(𝑡), 𝑃(𝑡) as follows 

 

ℒ{𝑆0} =
1

𝑤
+
10

𝑤2
 , ℒ{𝐶0} =

1

𝑤
+
90

𝑤2
 , ℒ{𝑅0} =

1

𝑤
 , ℒ{𝑃0} =  

1

𝑤
+
50

𝑤2
 

 

ℒ{𝑆1} = −
0.884

𝑤4
−

21.975

𝑤3
   

ℒ{𝐶1} =
0.0170107

𝑤4
+
4.18

𝑤3
+
0.025

𝑤2
  

ℒ{𝑅1} =
0.0455

𝑤4
−

2.05

𝑤
                                    (53) 

 

 ℒ{𝑃1} =
134.625

𝑤3
 

Taking the inverse Laplace transform of both sides of the above equations, we obtain the solutions of the 

parameters as follows 

 

𝑆(𝑡) = 1 + 10𝑡 − 105.988𝑡2 − 0.147333𝑡3 + 0.18865𝑡4 − 102.764𝑡5 + 0.92276𝑡6 

𝐶(𝑡) = 1 + 90.025𝑡 + 2.09𝑡2 + 0.0283512𝑡3 ++0.32445𝑡4 + 3.042𝑡5 + 0.3572𝑡6 

𝑅(𝑡) = −1.05 + 0.366667𝑡3 − 0.41225𝑡5 + 0.77162𝑡6 − 0.98112𝑡8                 (54) 

𝑃(𝑡) = 1 + 50𝑡 + 67.3125𝑡2 + 98.2𝑡3 + 123.521𝑡4 + 142.56𝑡5 + 160.228𝑡6 

 

Next, we calculate the [4 4⁄ ] Pade approximants of the infinite series solution which gives the following rational 

fraction approximation of the parameters of interest using Mathematica 

 

 𝑆𝑃𝑎𝑑𝑒(𝑡) =
1−1.0055603381𝑡−216.1577035895𝑡2+1165.18757403778𝑡3+24.768449865626𝑡4

1−11.0055603381𝑡−0.1141002086𝑡2+0.018580010169𝑡3+10.679264634963112𝑡4
 

 

 𝐶𝑃𝑎𝑑𝑒(𝑡) =
1+89.9293681284𝑡−6.50795721247𝑡2+0.84819208012𝑡3+0.514060251945𝑡4

1−0.0956318716𝑡+0.01130203196𝑡2+0.00224606435𝑡3−0.0335016599824𝑡4
 

 

 𝑅𝑃𝑎𝑑𝑒(𝑡) =
−1.05−1.7080263275𝑡−1.18053301770𝑡2+0.655940772916𝑡3+2.863559041949𝑡4

1+1.6266917405𝑡+1.12431715971𝑡2−0.275498831348𝑡3−2.15914748718942𝑡4
 

 

 𝑃𝑃𝑎𝑑𝑒(𝑡) =
1+50.6861390516𝑡+95.12200150658𝑡2−181.598502169621𝑡3−292.3326459478966𝑡4

1+0.6861390516𝑡−6.49745107297𝑡2−1.1116834311026587𝑡3+9.711346090612944𝑡4
 

 

VI. RESULTS AND DISCUSSION 
In this subsection, the results of the problem in Eq. (1) are presented to show the effects of the 

governing parameters on the model. The effectiveness and accuracy of the numerical methods are displayed in 

Tables 1-4 and Figures 1-4. The methods give highly accurate results in few steps. The results obtained when 

compared are consistent with literature 

 

 

 

Table 1: Numerical Computations for S(t) 

t LADM LADM-PADE 4th Order R-K 

0 1 1 1 

0.2 -1.27322 -1.27369 -1.27310 

0.4 -13.01120 -13.1023 -13.1201 

0.6 -39.11090 -41.6953 -41.6102 

0.8 -92.2623 -134.119 -134.102 

1.0 -196.788 -195.23 -194.21 

1.2 -392.44 178.808 178.801 
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Table 2: Numerical computations for C(t) 

t LADM LADM-PADE 4th Order R-K 

0 1 1 1 

0.2 19.0903 19.0903 19.0901 

0.4 37.3871 37.3872 37.3862 

0.6 56.0688 56.0699 56.0700 

0.8 75.5955 75.6116 75.6110 

1.0 96.867 96.9949 96.9950 

1.2 121.397 122.11 122.020 

 

Table 3: Numerical Computations for R(t) 

t LADM LADM-PADE 4th Order R-K 

0 -1.05 -1.05 -1.05 

0.2 -1.04715 -1.04715 -1.04715 

0.4 -1.02824 -1.02796 -1.02796 

0.6 -0.983335 -0.973338 -0.97337 

0.8 -0.959682 -0.833489 -.0.833452 

1.0 -1.30508 -0.318347 -0.318340 

1.2 -3.3568 -5.94349 -5.94340 

 

Table 4: Numerical Computations for P(t) 

T LADM LADM-PADE 4th Order R-K 

0 1 1 1 

0.2 14.7316 14.7307 14.8126 

0.4 43.333 42.1704 42.1712 

0.6 111.013 125.796 125.700 

0.8 273.669 272.619 272.669 

1.0 642.822 641.814 641.802 

1.2 1416.93 1415.86 1415.72 

 

 
Figure 1. Numerical comparison of LADM and LADM-PADE for 𝑆(𝑡) 
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Figure 2. Numerical comparison of LADM and LADM-PADE for 𝐶(𝑡) 

 

 
Figure 3. Numerical comparison of LADM and LADM-PADE for 𝑅(𝑡) 

 

 
Figure 4. Numerical comparison of LADM and LADM-PADE for 𝑃(𝑡) 
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VII. CONCLUSION 
In this work, the approximate analytical solution of the mathematical model describing crime 

deterrence in society is solved using the fusion of Laplace transform and Adomian decomposition method 

(LADM). The validity, accuracy, flexibility and effectiveness of the method is demonstrated by obtaining the 

exact solution of the parameters of interest subject to the initial condition. The solution obtained shows the 

MADM is effective and convenient. Furthermore, MADM is a promising tool to effectively both linear and 

nonlinear PDEs. The benchmark solution is a ready reference for further works in the crime model. 

 

REFERENCE 
[1]. Misra, A.K. (2014). Modelling the effect of police deterrence on the prevalence of crime in the society. Applied Mathematics and 

computation, 237, 531-545. 
[2]. Esmailzadeh, E., Davood, Y., Hassan, A. (2019). Analytical methods in Nonlinear Oscillations: Approaches and Application. 

Springer Nature, India. 

[3]. Khuri, S.A. (2001). A Laplace decomposition algorithm applied to a class of nonlinear differential equation. Journal of Applied 
Mathematics, 1, 141-155. 

[4]. Fadaei, J. (2011). Application of Laplace Adomian decomposition method on linear and nonlinear system of PDEs. Applied 

Mathematical Sciences, 5, 1307-1315. 
[5]. Khan, M., Hussain, M., Jafari, H., Khan, Y. (2010). Application of Laplace decomposition method to solve nonlinear coupled 

partial differential equations. World Applied Science Journal, 9, 13-19. 

[6]. Khuri, S.A. (2004). A new Approach to Bratu’s problem. Applied Mathematics Computation,147, 131-136. 
[7]. Khuri, S.A., Alchikh, R. (2019). An iterative Approach for the numerical solution of Fractional Boundary Value problems. 

International Journal of Applied Computational Mathematics, 5, 147. 

[8]. Khuri, S.A., Alchikh, R. (2020). On the solution of the fractional Bratu’s problem. International Journal of Interdisciplinary 
Mathematics, ISSN: 0972-0502, 2169-012X. 

[9]. Yusufoglu, E. (2006). Numerical solution of the Duffing equation by the Laplace decomposition algorithm. Applied Mathematics 

computation, 177, 572-580. 
[10]. Nasser, A.S. (1997). A Numerical method for the solution of the Falkner-Skan equation. Applied Mathematics Computation, 81, 

259-264. 

[11]. Ongun, M.Y. (2011). The Laplace Adomian decomposition for solving a model for HIV infection of CD4+Tcells. Mathematics and 
computational modelling, 53, 597-603. 

[12]. Pue-on, P. (2013). Laplace Adomian decomposition method for solving Newell-Whitehead-Segel Equation. Applied Mathematical 

Sciences, Vol 7, No. 132, 6593-6600.  
[13]. Cherruault, Y. (2002). Solution of Nonlinear Equation by Modified Adomian Decomposition method. Applied Mathematics and 

Computation, 132(1), 167-172. 
[14]. Doğan, N. (2012). Solution of the System of Ordinary Differential Equation by 

Combined Laplace Transform–Adomian Decomposition Method. Mathematical 

and Computational Applications. 17(3), 203-2012. 
[15]. Hendi, F. A. (2011). The Combined Laplace Adomian decomposition Method 

Applied for Solving Linear and Nonlinear Volterra Integral Equation with 

Weakly kernel. Studies in Nonlinear Sciences. 2(4), 129-134. 
[16]. Wazwaz, A. M. (2010). The combined Laplace transform–Adomian decomposition 

method for handling nonlinear Volterra Integro–differential equations. Applied 

Mathematics and Computation. 216(4), 1304–1309. 
[17]. Waleed, A.H. (2013). Solving nth-order Integro-differential equation using the combined Laplace transform-Adomian 

decomposition method. Applied Mathematics, 4, 882-886. 

[18]. Manafianheris, J. (2012). Solving the Integro-differential equations using the modified Laplace Adomian decomposition method. 
Journal of mathematical Extension, 6, 41-55. 

[19]. Mohamed, M.A., Torky, M.S. (2013). Numerical solution of Nonlinear system of Partial differential by the Laplace decomposition 

method and the Pade Approximation. American Journal of Computational Mathematics, 3, 175-184. 
[20]. Koroma, M.A., Widatalla, S., Kamara, A.F., Zhang, C. (2013). Laplace Adomian decomposition method applied to a two-

dimensional viscous fluid with shrinking sheet.7, 525-529. 

[21]. Islam, S., Khan, Y., Faraz, N., Austin, F. (2010). Numerical solution to Logistic differential equation by using Laplace 
decomposition method. World Applied Science Journal, 8, 1100-1105. 

[22]. Yindoula, J.B., Youssouf, P., Bissanga, G., Bassino, F., Some, B. (2014). Application of the Adomian decomposition method and 

Laplace transform method to solving the convection diffusion-dissipation equation. International Journal of Applied Mathematical 

Research, 3, 30-35. 

[23]. Wazwaz, A.M. (1998). A Comparison between Adomian decomposition method and Taylor series method in the series solutions. 

Applied Mathematics and Computation, 97(1), 37-44. 
[24]. Adomian, G. (1990). A review of the decomposition method and some results for nonlinear equation. Mathematical and Computer 

Modelling, 13(7),17-43. 

[25]. Momani, S., Odibat, Z. (2006). Analytical solution of a time-fractional Navier-Stokes equation by Adomian decomposition. 
Applied Mathematics and computation, 177(2), 488-494. 

[26]. Evans, D.J., Raslan, K.R. (2005). The Adomain decomposition method for solving delay differential equations. International 

Journal of Computer Mathematics, 82(1), 49-54. 
[27]. Wazwaz, A.M. (1999). A reliable modification of Adomian decomposition method. Applied Mathematics and computation, 102(1), 

77-86. 

[28]. Jafari, H. Daftardar-Gejji, V. (2006). Revised Adomian decomposition method for solving a system of nonlinear equation. Applied 
Mathematics and computation. 

[29]. Adomian, G. (1988). A Review of the Decomposition Method in Applied 

Mathematics. Journal of Mathematical Analysis and Applications. 135(2), 501- 
509. 

http://www.theijes.com/


Modified Adomian Decomposition Method and Padé Approximant for the Numerical .. 

DOI:10.9790/1813-1007010112                                   www.theijes.com                                                     Page 12 

[30]. Adomian, G. (1994). Solving Frontier Problems of Physics: The decomposition 

method. Kluwer, Academic Publishers. 

[31]. Al-khaled, K., and Allan, F. (2005). Decomposition Method for Solving Nonlinear 
Integro-Differential Equations. Mathematics and computing. 19(1 – 2), 415- 425. 

[32]. He, J.H. (2000). A review of some recently developed nonlinear analytical techniques. International Journal of Nonlinear Sciences 

and Numerical Simulations, 1(15), 51-70. 
[33]. Cherruault, Y., and Abbaoui, K. (1994). Convergence of Adomian’s Method applied 

to Nonlinear Equations. Mathematical and Computer Modelling. 20(9), 69-73. 

[34]. Khan, M., and Hussain, M. (2011). Application of Laplace Decomposition Method 
on Semi-Infinite Domain. Numerical Algorithm. 56(2), 211-218. 

[35]. Hou, J., Yang, C. (2013). An approximate solution of nonlinear fractional differential equation by Laplace transforms and Adomian 

polynomials. Journal of Information and Computational Science, 10, 213-222.  
[36]. Doan, N. (2012). Solution of the system of ordinary differential equations by combined Laplace transform and Adomian 

decomposition method. Mathematical and Computational Applications, 17, 203-211. 

[37]. Baker, G.A. (1975). Essentials of Pade Approximants. Academic Press, London 
[38]. Baker, G.A., Graves-Morris, P. (1996). Essentials of Pade Approximants. Cambridge University Press, Cambridge. 

[39]. Boyd, J. (1997). Pade Approximant algorithm for solving nonlinear ordinary differential equation boundary value problems on an 

unbounded domain. Computers in Physics, 11(3), 299-303. 
[40]. Wazwaz, A.M. (1999). Analytical approximations and Pade approximants for Volterra’s population model. Applied Mathematics 

and Mathematical Computation, 100, 31-35. 

[41]. Wazwaz, A.M. (1999). The Modified decomposition method and Pade’s approximants for solving Thomas-Fermi equation. Applied 
Mathematics and Mathematical Computations, 105, 11-19. 

[42]. Padé, H. (1892) Sur la représentation approchée d’une fonction par des fractions rationnelles. Annales scientifiques de l’école 

normale supérieure, 9, 193. 
[43]. Momani, S., Rami, Q. (2007). Numerical approximation and Pade approximation for a fractional population growth model, 31, 

1907-1914. 

Liberty Ebiwareme. "Modified Adomian Decomposition Method and Padé Approximant for the 

Numerical Approximation of the Crime Deterrence Model in Society." The International Journal of 

Engineering and Science (IJES), 10(07), (2021): pp. 01-12. 

 

 

http://www.theijes.com/

