Combinatorial Identities Related To Root Supermultiplicities In Some Borcherds Superalgebras

N.Sthanumoorthy* and K.Priyadharsini
The Ramanujan Institute for Advanced study in Mathematics University of Madras, Chennai - 600 005, India.

Abstract

In this paper, root supermultiplicities and corresponding combinatorial identities for the Borcherds superalgebras which are extensions of B_{2} and B_{3} are found out.

Keywords: Borcherds superalgebras, Colored superalgebras, Root supermultiplicities.

Date of Submission: 10-June-2015

Date of Accepted: 25-June-2015

I. INTRODUCTION

The theory of Lie superalgebras was constructed by Kac in 1977. The theory of Lie superalgebras can also be seen in Scheunert(1979) in a detailed manner. The notion of Kac-Moody superalgebras was introduced by $\operatorname{Kac}(1978)$ and therein the Weyl-Kac character formula for the irreducible highest weight modules with dominant integral highest weight which yields a denominator identity when applied to 1-dimensional representation was also derived. Borcherds $(1988,1992)$ proved a character formula called Weyl-Borcherds formula which yields a denominator identity for a generalized Kac-Moody algebra.Kang developed homological theory for the graded Lie algebras in 1993a and derived a closed form root multiplicity formula for all symmetrizable generalized Kac-Moody algebras in 1994a. Miyamoto(1996) introduced the theory of generalized Lie superalgebra version of the generalized Kac-Moody algebras(Borcherds algebras). Kim and Shin(1999) derived a recursive dimension formula for all graded Lie algebras. Kang and Kim(1999) computed the dimension formula for graded Lie algebras. Computation of root multiplicities of many Kac-Moody algebras and generalized Kac-Moody algebras can be seen in Frenkel and Kac(1980), Feingold and Frenkel(1983),Kass et al.(1990), Kang(1993b, 1994b,c,1996), Kac and Wakimoto(1994), Sthanumoorthy and Uma Maheswari(1996b), Hontz and Misra(2002), Sthanumoorthy et al.(2004a,b) and Sthanumoorthy and Lilly(2007b). Computation of root multiplicities of Borcherds superalgebras was found in Sthanumoorthy et al.(2009a). Some properties of different classes of root systems and their classifications for Kac-Moody algebras and Borcherds Kac-Moody algebras were studied in Sthanumoorthy and Uma Maheswari(1996a) and Sthanumoothy and Lilly(2000, 2002,2003,2004, 2007a). Also, properties of different root systems and complete classifications of special, strictly, purely imaginary roots of Borcherds Kac-Moody Lie superalgebras which are extensions of Kac-Moody Lie algebras were explained in Sthanumoorthy et al. $(2007,2009 b)$ and Sthanumoorthy and Priyadharsini(2012, 2013). Moreover, Kang(1998) obtained a superdimension formula for the homogeneous subspaces of the graded Lie superalgebras, which enabled one to study the structure of the graded Lie superalgebras in a unified way. Using the Weyl-Kac-Borcherds formula and the denominator identity for the Borcherds superalgerbas, Kang and $\operatorname{Kim}(1997)$ derived a dimension formula and combinatorial identities for the Borcherds superalgebras and found out the root multiplicities for Monstrous Lie superalgebras. Borcherds superalgebras which are extensions of Kac Moody algebras A_{2} and A_{3} were considered in Sthanumoorthy et al.(2009a) and therein dimension formulas were found out.In Sthanumoorthy and Priyadharsini(2014), we have computed combinatorial identities for A_{2} and A_{3} and root super multiplicities for some hyperbolic Borcherds superalgebras.

The aim of this paper is to compute dimensional formulae, root supermultiplicities and corresponding combinatorial identities for the Borcherds superalgebras which are extensions of Kac-Moody algebras B_{2} and B_{3}.

II. PRELIMINARIES

In this section, we give some basic concepts of Borcherds superalgebras as in Kang and Kim (1997).

Definition 2.1: Let I be a countable (possibly infinite) index set. A real square matrix $A=\left(a_{i j}\right)_{i, j \in I}$ is called Borcherds-Cartan matrix if it satisfies:
(1) $a_{i i}=2$ or $a_{i i} \leq 0$ for all $i \in I$,
(2) $a_{i j} \leq 0$ if $i \neq j$ and $a_{i j} \in \mathrm{Z}$ if $a_{i i}=2$,
(3) $a_{i j}=0 \Leftrightarrow a_{j i}=0$

We say that an index i is real if $a_{i i}=2$ and imaginary if $a_{i i} \leq 0$. We denote by

$$
I^{\mathrm{re}}=\left\{i \in I \mid a_{i i}=2\right\}, \quad I^{\mathrm{i} m}=\left\{i \in I \mid a_{i i} \leq 0\right\} .
$$

Let $\underline{m}=\left\{m_{i} \in Z_{>0} \mid i \in I\right\}$ be a collection of positive integer such that $m_{i}=1$ for all $i \in I^{\text {re }}$. We call \underline{m} a charge of A.
Definition 2.2: A Borcherds-Cartan matrix A is said to be symmetrizable if there exists a diagonal matrix $D=\operatorname{diag}\left(\varepsilon_{i} ; i \in I\right)$ with $\varepsilon_{i}>0(i \in I)$ such that $D A$ is symmetric.

Let $C=\left(c_{i j}\right)_{i, j \in I}$ be a complex matrix satisfying $c_{i j} c_{j i}=1$ for all $i, j \in I$. Therefore, we have $c_{i i}= \pm 1$ for all $i \in I$. We call $i \in I$ an even index if $c_{i i}=1$ and an odd index if $c_{i i}=-1$.
We denote by $I^{\text {even }}$ ($I^{\text {odd }}$) the set of all even (odd) indices.
Definition 2.3: A Borcherds-cartan matrix $A=\left(a_{i j}\right)_{i, j \in I}$ is restricted (or colored) with respect to C if it satisfies:
If $a_{i i}=2$ and $c_{i i}=-1$ then $a_{i j}$ are even integers for all $j \in I$. In this case, the matrix C is called a coloring matrix of A.
Let $\mathrm{h}=\left(\oplus_{i \in I} \mathrm{C} h_{i}\right) \oplus\left(\oplus_{i \in I} \mathrm{C} d_{i}\right)$ be a complex vector space with a basis $\left\{h_{i}, d_{i} ; i \in I\right\}$, and for each $i \in I$, define a linear functional $\alpha_{i} \in \mathrm{~h}$ * by

$$
\alpha_{i}\left(h_{j}\right)=a_{j i}, \alpha_{i}\left(d_{j}\right)=\delta_{i j} \text { for all } j \in I \ldots \ldots \ldots(2.1)
$$

If A is symmetrizable, then there exists a symmetric bilinear form (|) on h * satisfying $\left(\alpha_{i} \mid \alpha_{j}\right)=\varepsilon_{i} a_{i j}=\varepsilon_{j} a_{j i}$ for all $i, j \in I$.
Definition 2.4: Let $Q=\oplus_{i \in I} \mathrm{Z} \alpha_{i}$ and $Q_{+}=\sum_{i \in I} \mathrm{Z}_{\geq 0} \alpha_{i}, Q_{-}=-Q_{+} \cdot Q$ is called the root lattice.
The root lattice Q becomes a (partially) ordered set by putting $\lambda \geq \mu$ if and only if $\lambda-\mu \in Q_{+}$.
The coloring matrix $C=\left(c_{i j}\right)_{i, j \in I}$ defines a bimultiplicative form $\theta: Q \times Q \rightarrow C^{x}$ by

$$
\begin{aligned}
& \theta\left(\alpha_{i}, \alpha_{j}\right)=c_{i j} \text { for alli, } j \in I, \\
& \theta(\alpha+\beta, \gamma)=\theta(\alpha, \gamma) \theta(\beta, \gamma), \\
& \theta(\alpha, \beta+\gamma)=\theta(\alpha, \beta) \theta(\alpha, \gamma)
\end{aligned}
$$

for all $\alpha, \beta, \gamma \in Q$. Note that θ satisfies

$$
\begin{equation*}
\theta(\alpha, \beta) \theta(\beta, \alpha)=1 \text { forall } \alpha, \beta \in Q \text {, } \tag{2.2}
\end{equation*}
$$

\qquad
since $c_{i j} c_{j i}=1$ for all $i, j \in I$. In particular $\theta(\alpha, \alpha)= \pm 1$ for all $\alpha \in Q$.
We say $\alpha \in Q$ is even if $\theta(\alpha, \alpha)=1$ and odd if $\theta(\alpha, \alpha)=-1$.
Definition 2.5: A θ-colored Lie super algebra is a Q-graded vector space $L=\oplus_{\alpha \in Q} L_{\alpha}$ together with a bilinear product [,] : $L \times L \rightarrow L$ satisfying

$$
\begin{aligned}
& {\left[L_{\alpha}, L_{\beta}\right] \subset L_{\alpha+\beta},} \\
& {[x, y]=-\theta(\alpha, \beta)[y, x]}
\end{aligned}
$$

$$
[x,[y, z]]=[[x, y], z]+\theta(\alpha, \beta)[y,[x, z]]
$$

for all $\alpha, \beta \in Q$ and $x \in L_{\alpha}, y \in L_{\beta}, z \in L$.
In a θ-colored Lie super algebra $L=\oplus_{\alpha \in Q} L_{\alpha}$, for $x \in L_{\alpha}$, we have $[x, x]=0$ if α is even and $[x,[x, x]]=0$ if α is odd.

Definition 2.6: The universal enveloping algebra $U(L)$ of a θ-colored Lie super algebra L is defined to be $T(L) / J$, where $T(L)$ is the tensor algebra of L and J is the ideal of $T(L)$ generated by the elements $[x, y]-x \otimes y+\theta(\alpha, \beta) y \otimes x\left(x \in L_{\alpha}, y \in L_{\beta}\right)$.

Definition 2.7: The Borcherds superalgebra $\mathrm{g}=\mathrm{g}(A, \underline{m}, C)$ associated with the symmetrizable BorcherdsCartan matrix A of charge $\underline{m}=\left(m_{i} ; i \in I\right)$ and the coloring matrix $C=\left(c_{i j}\right)_{i, j \in I}$ is the θ-colored Lie super algebra generated by the elements $h_{i}, d_{i}(i \in I), e_{i k}, f_{i k}\left(i \in I, k=1,2, \cdots, m_{i}\right)$ with defining relations:

$$
\begin{array}{ll}
{\left[h_{i}, h_{j}\right]} & =\left[h_{i}, d_{j}\right]=\left[d_{i}, d_{j}\right]=0, \\
{\left[h_{i}, e_{j l}\right]} & =a_{i j} e_{j l}\left[h_{i}, f_{j l}\right]=-a_{i j} f_{j l}, \\
{\left[d_{i}, e_{j l}\right]} & =\delta_{i j} e_{j l},\left[d_{i}, f_{j l}\right]=-\delta_{i j} f_{j l}, \\
{\left[e_{i k}, f_{j l}\right]} & =\delta_{i j} \delta_{k l} h_{i} \\
\left(\text { ade }{ }_{i k}\right)^{1-a_{i j}} e_{j l} & =\left(a d f_{i k}\right)^{1-a_{i j}} f_{j l}=0 \text { if } a_{i i}=2 \text { and } i \neq j, \\
{\left[e_{i k}, e_{j l}\right]} & =\left[f_{i k}, f_{j l}\right]=0 \text { if } a_{i j}=0
\end{array}
$$

for $i, j \in I, k=1, \cdots, m_{i}, l=1, \cdots, m_{j}$.
The abelian subalgebra $\mathrm{h}=\left(\oplus_{i \in I} \mathrm{C} h_{i}\right) \oplus\left(\oplus_{i \in I} \mathrm{C} d_{i}\right)$ is called the Cartan subalgebra of g and the linear functionals $\alpha_{i} \in \mathrm{~h}^{*}(i \in I)$ defined by (2.1) are called the simple roots of g . For each $i \in I^{\text {re }}$, let $r_{i} \in G L\left(\mathrm{~h}^{*}\right)$ be the simple reflection of h * defined by

$$
r_{i}(\lambda)=\lambda-\lambda\left(h_{i}\right) \alpha_{i} \quad\left(\lambda \in \mathrm{~h}^{*}\right) .
$$

The subgroup W of $G L\left(\mathrm{~h}^{*}\right)$ generated by the r_{i} 's $\left(i \in I^{\mathrm{re}}\right)$ is called the Weyl group of the Borcherds super algebra g .
The Borcherds superalgebra $\mathrm{g}=\mathrm{g}(A, \underline{m}, C)$ has the root space decomposition $\mathrm{g}=\oplus_{\alpha \in \ell} \mathrm{g}_{\alpha}$, where

$$
\mathrm{g}_{\alpha}=\{x \in \mathrm{~g} \mid[h, x]=\alpha(h) x \text { for all } h \in \mathrm{~h}\} .
$$

Note that

$$
\begin{aligned}
& \mathrm{g}_{\alpha_{i}}=\mathrm{C} e_{i, 1} \oplus \cdots \oplus \mathrm{C} e_{i, m_{i}} \\
& \mathrm{~g}_{-\alpha_{i}}=\mathrm{C} f_{i, 1} \oplus \cdots \oplus \mathrm{C} f_{i, m_{i}}
\end{aligned}
$$

We say that $\alpha \in Q^{x}$ is a root of g if $\mathrm{g}_{\alpha} \neq 0$. The subspace g_{α} is called the root space of g attached to α . A root α is called real if $(\alpha \mid \alpha)>0$ and imaginary if $(\alpha \mid \alpha) \leq 0$.

In particular, a simple root α_{i} is real if $a_{i i}=2$ that is if $i \in I^{\text {re }}$ and imaginary if $a_{i i} \leq 0$ that is if $i \in I^{\mathrm{im}}$. Note that the imaginary simple roots may have multiplicity >1. A root $\alpha>0(\alpha<0)$ is called positive (negative). One can show that all the roots are either positive or negative. We denote by $\Delta_{,} \Delta_{+}$and Δ_{-}the set of all roots, positive roots and negative roots, respectively. Also we denote $\Delta_{0^{-}}\left(\Delta_{i}\right)$ the set of all even (odd) roots of g . Define the subspaces $\mathrm{g}^{ \pm}=\oplus_{\alpha \in \Delta_{ \pm}} \mathrm{g}_{\alpha}$.
Then we have the triangular decomposition of $g: g=g^{-} \oplus h \oplus g^{+}$.

Definition 2.8:(Sthanumoorthy et al.(2009b)) We define an indefinite nonhyperbolic Borcherds - Cartan matrix A, to be of extended-hyperbolic type, if every principal submatrix of A is of finite, affine, or hyperbolic type Borcherds - Cartan matrix. We say that the Borcherds superalgebra associated with a Borcherds - Cartan matrix A is of extended-hyperbolic type, if A is of extended-hyperbolic type.

Definition 2.9: A g -module V is called h -diagonalizable, if it admits a weight space decomposition $V=\oplus_{\mu \in \mathrm{h}^{*}} V_{\mu}$, where $V_{\mu}=\{v \in V \mid h \cdot v=\mu(h) v f o r$ all $h \in \mathrm{~h}\}$. If $V_{\mu} \neq 0$, then μ is called a weight of V, and $\operatorname{dim} V_{\mu}$ is called the multiplicity of μ in V.

Definition 2.10: A h -diagonalizable g -module V is called a highest weight module with highest weight $\lambda \in \mathrm{h}^{*}$, if there is a nonzero vector $v_{\lambda} \in V$ such that

1. $e_{i k} \cdot v_{\lambda}=0$, for all $i \in I, k=1, \cdots, m_{i}$,
2. $h \cdot v_{\lambda}=\lambda(h) v_{\lambda}$ for all $h \in \mathrm{~h}$ and
3. $V=U(\mathrm{~g}) \cdot v_{\lambda}$.

The vector v_{λ} is called a highest weight vector.
For a highest weight module V with highest weight λ, we have
(i) $V=U\left(\mathrm{~g}^{-}\right) \cdot v_{\lambda}$,
(ii) $V=\oplus_{\mu \leq \lambda} V_{\mu}, V_{\lambda}=\mathrm{C} v_{\lambda}$ and
(iii) $\operatorname{dim} V_{\mu}<\infty$ for all $\mu \leq \lambda$.

Definition 2.11: Let $P(V)$ denote the set of all weights of V. When all the weights spaces are finite dimensional, the character of V is defined to be $\operatorname{chV}=\sum_{\mu \in{ }^{*}}\left(\operatorname{dim} V_{\mu}\right) e^{\mu}$,
where e^{μ} are the basis elements of the group $\mathrm{C}\left[\mathrm{h}^{*}\right]$ with the multiplication given by $e^{\mu} e^{\nu}=e^{\mu+v}$ for $\mu, v \in \mathrm{~h}^{*}$. Let $b_{+}=\mathrm{h} \oplus \mathrm{g}_{+}$be the Borel subalgebra of g and C_{λ} be the 1-dimensional b_{+}-module defined by $\mathrm{g}_{+} \cdot 1=0, h \cdot 1=\lambda(h) 1$ for all $h \in \mathrm{~h}$. The induced module $M(\lambda)=U(\mathrm{~g}) \otimes_{U\left(b_{+}\right)} \mathrm{C}_{\lambda}$ is called the Verma module over g with highest weight λ. Every highest weight g-module with highest weight λ is a homomorphic image of $M(\lambda)$ and the Verma module $M(\lambda)$ contains a unique maximal submodule $J(\lambda)$. Hence the quotient $V(\lambda)=M(\lambda) / J(\lambda)$ is irreducible.

Let P^{+}be the set of all linear functionals $\lambda \in \mathrm{h}$ * satisfying

$$
\begin{cases}\lambda\left(h_{i}\right) \in \mathrm{Z}_{\geq 0} & \text { for all } i \in I^{\mathrm{re}} \\ \lambda\left(h_{i}\right) \in 2 \mathrm{Z}_{\geq 0} & \text { for all } i \in I^{\mathrm{re}} \cap I^{\text {odd }} \\ \lambda\left(h_{i}\right) \geq 0 & \text { for all } i \in I^{\mathrm{i} m}\end{cases}
$$

The elements of P^{+}are called the dominant integral weights.
Let $\rho \in \mathrm{h}$ * be the C -linear functional satisfying $\rho\left(h_{i}\right)=\frac{1}{2} a_{i i}$ for all $i \in I$. Let T denote the set of all imaginary simple roots counted with multiplicities, and for $F \subset T$, we write $F \perp \lambda$, if $\lambda\left(h_{i}\right)=0$ for all $\alpha_{i} \in F$.

Definition 2.12:[Kang and Kim (1997)] Let J be a finite subset of $I^{\text {re }}$. We denote by
$\Delta_{J}=\Delta \cap\left(\sum_{j \in J} Z \alpha_{j}\right), \Delta_{J}^{ \pm}=\Delta^{ \pm} \cap \Delta_{J}$ and $\Delta^{ \pm}(J)=\Delta^{ \pm} \backslash \Delta_{J}^{ \pm}$. Let

$$
\mathrm{g}_{0}^{(J)}=\mathrm{h} \oplus\left(\underset{\alpha \in \Delta_{J}}{\oplus} \mathrm{~g}_{\alpha}\right),(2.3)
$$

and

$$
\mathrm{g}_{ \pm}^{(J)}=\underset{\alpha \in \Delta^{ \pm}(J)}{\oplus} \mathrm{g}_{\alpha} .
$$

Then $\mathrm{g}_{0}^{(J)}$ is the restricted Kac-Moody super algebra (with an extended Cartan subalgebra) associated with the Cartan matrix $A_{J}=\left(a_{i j}\right)_{i, j \in J}$ and the set of odd indices $J^{\mathrm{odd}}=J \cap I^{\mathrm{odd}}$

$$
=\left\{j \in J \mid c_{j j}=-1\right\}
$$

Then the triangular decomposition of g is given by $\mathrm{g}=\mathrm{g}_{-}^{(J)} \oplus \mathrm{g}_{0}^{(J)} \oplus \mathrm{g}_{+}^{(J)}$.
Let $W_{J}=\left\langle r_{j} \mid j \in J\right\rangle$ be the subgroup of W generated by the simple reflections $r_{j}(j \in J)$, and let

$$
W(J)=\left\{w \in W \mid \Delta_{w} \subset \Delta^{+}(J)\right\}
$$

where $\quad \Delta_{w}=\left\{\alpha \in \Delta^{+} \mid w^{-1} \alpha<0\right\} .(2.4)$
Therefore W_{J} is the Weyl group of the restricted Kac-Moody super algebra $\mathrm{g}_{0}^{(J)}$ and $W(J)$ is the set of right coset representatives of W_{J} in W. That is $W=W_{J} W(J)$.
The following lemma given in Kang and Kim (1999), proved in Liu (1992), is very useful in actual computation of the elements of $W(J)$.

Lemma 2.13: Suppose $w=w^{\prime} r_{j}$ and $l(w)=l\left(w^{\prime}\right)+1$. Then $w \in W(J)$ if and only if $w^{\prime} \in W(J)$ and $w^{\prime}\left(\alpha_{J}\right) \in \Delta^{+}(J)$.

Let $\Delta_{\bar{i}, J}^{ \pm}=\Delta_{\bar{i}}^{ \pm} \cap \Delta_{J}(i=0,1)$ and $\Delta_{i}^{ \pm}(J)=\Delta_{\bar{i}}^{ \pm} \backslash \Delta_{\bar{i}, J}^{ \pm}(i=0,1)$. Here $\Delta_{0}^{ \pm}\left(\Delta_{-}^{ \pm}\right)$denotes the set of all positive or negative even (resp., positive or negative odd) roots of g.
The following proposition, proved in Kang and Kim (1997), gives the denominator identity for Borcherds superalgebras.

Proposition 2.14: [Kang and Kim (1997)]. Let J be a finite subset of the set of all real indices $I^{\text {re }}$. Then

$$
\frac{\prod_{\alpha \in \Delta^{\overline{-}}}^{\substack{0(J)}}\left(1-e^{\alpha}\right)^{\operatorname{dim} g_{\alpha}}}{\prod_{\substack{\alpha \in \Delta_{i(J)}^{-}}}\left(1+e^{\alpha}\right)^{\operatorname{dim} g_{\alpha}}}=\sum_{w \in W(J)}(-1)^{l(w)+|F|} \operatorname{chV_{J}}(w(\rho-s(F)-\rho))
$$

where $V_{J}(\mu)$ denotes the irreducible highest weight module over the restricted Kac-Moody super algebra $\mathrm{g}_{0}^{(J)}$ with highest weight μ and where F runs over all the finite subsets of T such that any two elements of F are mutually perpendicular. Here $l(w)$ denotes the length of $w,|F|$ the number of elements in F, and $s(F)$ the sum of the elements in F.

Definition 2.15: A basis elements of the group algebra $\mathrm{C}\left[\mathrm{h}^{\hat{\alpha}}\right]$ by defining $E^{\alpha}=\theta(\alpha, \alpha) e^{\alpha}$.
Also define the super dimension $\operatorname{Dim} g_{\alpha}$ of the root space g_{α} by $\operatorname{Dim} \mathrm{g}_{\alpha}=\theta(\alpha, \alpha) \operatorname{dim} \mathrm{g}_{\alpha} \ldots \ldots \quad \quad$. (2.5)
Since $w(\rho-s(F))-\rho$ is an element of Q_{-}, all the weights of the irreducible highest weight $\mathrm{g}_{0}^{(J)}$-module $V_{J}(w(\rho-s(F))-\rho)$ are also elements of Q_{-}.

Hence one can define the super dimension $\operatorname{Dim} V{ }_{\mu}$ of the weight space V_{μ} of $V_{J}(w(\rho-s(F))-\rho)$ in a similar way. More generally, for an h -diagonalizable $\mathrm{g}_{0}^{(J)}$-module $V={ }_{\mu \in \mathrm{h}^{\text {a }}} V_{\mu}$ such that $P(V) \subset Q$, we define the super dimension $\operatorname{DimV}{ }_{\mu}$ of the weight space V_{μ} to be

$$
\operatorname{Dim} V_{\mu}=\theta(\mu, \mu) \operatorname{dim} V_{\mu}(2.6)
$$

For each $k \geq 1$, let

$$
\begin{equation*}
H_{k}^{(J)}=\underset{w \in W(J)}{\substack{F \subset T}} \bigoplus_{J}^{l(w)+|F|=k}< \tag{2.7}
\end{equation*}
$$

and define the homology space $H^{(J)}$ of $\mathrm{g}_{-}^{(J)}$ to be

$$
\begin{equation*}
H^{(J)}=\sum_{k=1}^{\infty}(-1)^{k+1} H_{k}^{(J)}=H_{1}^{(J)} \Theta H_{2}^{(J)} \oplus H_{3}^{(J)} \Theta \cdots,(2.8) \tag{2.8}
\end{equation*}
$$

an alternating direct sum of the vector spaces.
For $\tau \in Q_{-}$, define the super dimension $\operatorname{DimH}{ }_{\tau}^{(J)}$ of the τ-weight space of $H^{(J)}$ to be

$$
\begin{align*}
& \operatorname{DimH}{ }_{\tau}^{(J)}=\sum_{k=1}^{\infty}(-1)^{k+1}\left(\operatorname{DimH}_{k}^{(J)}\right)_{\tau} \\
& =\sum_{k=1}^{\infty}(-1)^{k+1} \sum_{w \in W(J)}^{F \subset T} \operatorname{Dim}_{J}(w(\rho-s(F))-\rho)_{\tau} \\
& =\sum_{w \in W(J)} \sum_{F \subset T}^{l(w)+|F| \geq 1} \tag{2.9}
\end{align*}
$$

Let

$$
P\left(H^{(J)}\right)=\left\{\alpha \in Q^{-}(J) \mid \operatorname{dim} H_{\alpha}^{(J)} \neq 0\right\} \ldots \ldots \ldots \quad \ldots \ldots \ldots .
$$

and let $\left\{\tau_{1}, \tau_{2}, \tau_{3}, \cdots\right\}$, be an enumeration of the set $P\left(H^{(J)}\right)$. Let $D(i)=\operatorname{DimH}{ }_{\tau_{i}}^{(J)}$.

Remark: The elements of $P\left(H^{(J)}\right)$ can be determined by applying the following proposition, proved in Kac (1990).

Proposition 2.16: (Kang and Kim, 1997)

Let $\Lambda \in P_{+}$. Then $P(\Lambda)=W .\left\{\lambda \in P_{+} \mid \lambda \bullet\right.$ is nondegener ate with respect to $\left.\Lambda\right\}$.

Now for $\tau \in Q^{-}(J)$, one can define

$$
\begin{equation*}
T^{(J)}(\tau)=\left\{n=\left(n_{i}\right)_{i \geq 1} \mid n_{i} \in \mathbb{Z}_{\geq 0}, \sum n_{i} \tau_{i}=\tau\right\}, \tag{2.11}
\end{equation*}
$$

which is the set of all partitions of τ into a sum of α_{i} 's. For $n \in T^{(J)}(\alpha)$, use the notations $|n|=\sum n_{i}$ and $n!=\prod n_{i}!$.

Now, for $\tau \in Q^{-}(J)$, the Witt partition function $W^{(J)}(\tau)$ is defined as

$$
\begin{equation*}
W^{(J)}(\tau)=\sum_{n \in T^{(J)}(\tau)} \frac{(|n|-1)!}{n!} \prod D(i)^{n_{i}} \tag{2.12}
\end{equation*}
$$

Now a closed form formula for the super dimension $\operatorname{Dim} \mathrm{g}_{\alpha}$ of the root space $\mathrm{g}_{\alpha}\left(\alpha \in \Delta^{-}(J)\right)$ is given by the following theorem. The proof is given in Kang and Kim(1997).

Theorem 2.17: Let J be a finite subset of I^{re}. Then, for $\alpha \in \Delta^{-}(J)$, we have

$$
\begin{array}{r}
\operatorname{Dim} \mathrm{g}_{\alpha}=\sum_{d \mid \alpha} \frac{1}{d} \mu(d) W^{(J)}\left(\frac{\alpha}{d}\right) \\
=\sum_{d \mid \alpha} \frac{1}{d} \mu(d) \sum_{n \in T^{(J)}\left(\frac{\alpha}{d}\right)} \frac{(|n|-1)!}{n!} \prod D(i)^{n_{i}} . . \tag{2.13}
\end{array}
$$

where μ is the classical Möbius function. Namely, for a natural number $n, \mu(n)$ is defined as follows:

$$
\mu(n)= \begin{cases}1 & \text { for } n=1, \\ (-1)^{k} & \text { for } n=p_{1} \cdots p_{k}\left(p_{1}, \cdots, p_{k}: \mathrm{d} \text { istinct primes }\right), \\ 0 & \text { if it is not square free }\end{cases}
$$

and, for a positive integer $d, d \mid \alpha$ denotes $\alpha=d \alpha$ for some $\alpha \in Q_{-}$, in which case $\alpha=\frac{\alpha}{d}$.
In the following sections 3.1 and 3.2, we find root supermultiplicities of Borcherds superalgebras which are the Extensions of Kac-Moody Algebras B_{2} and B_{3} (with multiplicity 1) and the corresponding combinatorial identities using Kang and $\operatorname{Kim}(1997)$.

III. Root supermultiplicities of some Borcherds superalgebras which are the Extensions of Kac Moody Algebras and the corresponding combinatorial identities

3.1 Superdimension formula and the corresponding combinatorial identity for the extended-hyperbolic Borcherds superalgebra which is an extension of B_{2}

Below, we find the dimension formulae and combinatorial identities for the Borcherds superalgebras which are extension of B_{2}. (for a same set $J \in \Pi^{r e}$) by solving $T^{(J)}(\tau)$ in two different method.
Consider the extended-hyperbolic Borcherds superalgebra $\mathrm{g}=\mathrm{g}(A, \underline{m}, C)$ associated with the extendedhyperbolic Borcherds-Cartan super matrix,
$A=\left(\begin{array}{ccc}-k & -a & -b \\ -a & 2 & -1 \\ -b & -2 & 2\end{array}\right)$ and the corresponding coloring matrix $\mathrm{C}=\left|\begin{array}{ccc}-1 & c_{1} & c_{2} \\ c_{1}^{-1} & 1 & c_{3}\end{array}\right|$ with $c_{1}, c_{2}, c_{3} \in C^{x}$.
Let $I=\{1,2,3\}$ be the index set for the simple roots of g . Here α_{1} is the imaginary odd simple root with multiplicity 1 and α_{2}, α_{3} are the real even simple roots.
Let us consider the root $\alpha=k_{1} \alpha_{1}+k_{2} \alpha_{2}+k_{3} \alpha_{3} \in Q$. We have $\theta(\alpha, \alpha)=(-1)^{k_{1}^{2}}$. Hence α is an even $\operatorname{root}\left(\right.$ resp. odd root) if k_{1} is even integer(resp. odd integer). Also $T=\left\{\alpha_{1}\right\}$ and the subset $F \subset T$ is either empty or $\left\{\alpha_{1}\right\}$. Take $J \subset \Pi^{r e}$ as $J=\{3\}$. By Lemma 2.13, this implies that $W(J)=\left\{1, r_{2}\right\}$. From the equations(2.7) and (2.8), the homology space can be written as

$$
\begin{aligned}
& H_{1}^{(J)}=V_{J}\left(-\alpha_{1}\right) \oplus V_{J}\left(-\alpha_{2}\right) \\
& H_{2}^{(J)}=V_{J}\left(-\alpha_{1}-(a+1) \alpha_{2}\right) \\
& H_{k}^{(J)}=0 \quad \forall k \geq 3 \\
& \text { Therefore } \quad H^{(J)}=H_{1}^{(J)} \Theta H_{2}^{(J)} \\
& \quad=V_{J}\left(-\alpha_{1}\right) \oplus V_{J}\left(-\alpha_{2}\right) \Theta V_{J}\left(-\alpha_{1}-(a+1) \alpha_{2}\right)
\end{aligned}
$$

with $\quad \operatorname{DimH} \underset{(1,0,0)}{(J)}=-1 ; \quad \operatorname{DimH} \underset{(0,1,0)}{(J)}=-1$

$$
\operatorname{DimH}{\underset{(1,1,1)}{(J)}=-1 ; \quad \operatorname{DimH}}_{(1,1, a+1)}^{(J)}=-1 .
$$

We take $\quad P\left(H^{(J)}\right)=\{(1,0,0), \quad(0,1,0), \quad(1,1,1), \quad(1,1, \quad a+1)\}$.
Let $\tau=\alpha=-p \alpha_{1}-q \alpha_{2}-u \alpha_{3} \in Q_{-}$, with $(p, q, t) \in Z_{\geq 0} \times Z_{20} \times Z_{20}$. Then by proposition.(2.16) we get $\quad T^{(J)}(\tau)=\left\{\left(s_{1}, s_{2}, s_{3}, s_{4}\right) \mid s_{1}(1,0,0)+s_{2}(0,1,0)+s_{3}(1,1,1)+s_{4}(1,1, a+1)=(p, q, u)\right\}$.
This implies

$$
\begin{aligned}
& s_{1}+s_{3}+s_{4}=p \\
& s_{2}+s_{3}+s_{4}=q \\
& s_{3}+(a+1) s_{4}=u
\end{aligned}
$$

We have

$$
\begin{aligned}
& s_{1}=p-u+a s_{4} \\
& s_{2}=q-u+a s_{4} \\
& s_{3}=u-(a+1) s_{4} \\
& s_{4}=0 \text { to } \min \left(p, q,\left[\frac{u}{a+1}\right]\right)
\end{aligned}
$$

Applying $s_{1}, s_{2}, s_{3}, s_{4}$ in Witt partition formula(eqn.(2.12)), we have,

$$
\begin{equation*}
W^{(J)}(\tau)=\sum_{s_{4}=0}^{\min \left(p, q,\left[\frac{u}{a+1} 1\right)\right.} \frac{\left(p-u+q+a s_{4}-1\right)!(-1)^{p-u+q+a s_{4}}}{(p-q)!\left(q-u+a s_{4}\right)!\left(u-(a+1) s_{4}\right)!s_{4}!} . \tag{3.1.1}
\end{equation*}
$$

From eqn(2.13), the dimension of g_{α} is

$$
\begin{array}{r}
\operatorname{Dim} \mathrm{g}_{\alpha}=\sum_{d \mid \alpha} \frac{1}{d} \mu(d) W^{(J)}\left(\frac{\alpha}{d}\right) \\
=\sum_{d \mid \alpha} \frac{1}{d} \mu(d) \sum_{n \in T^{(J)}\left(\frac{\alpha}{d}\right)} \frac{(|n|-1)!}{n!} \prod^{d^{d}}(i)^{n_{i}},
\end{array}
$$

Substituting the value of $W^{(J)}(\tau)$ from eqn. (3.1.1) in the above dimension formula, we have,
$\operatorname{Dim} \mathrm{g}_{\alpha}=\sum_{d \mid \alpha} \frac{1}{d} \mu(d) \sum_{s_{4}=0}^{\left.\min \left(\frac{p}{d}, \frac{q}{d}, \mathrm{t} \frac{t}{d(a+1)}\right)\right)} \frac{\left(\frac{p}{d}-\frac{u}{d}+\frac{q}{d}+\frac{a}{d} s_{4}-1\right)!(-1)^{p / d-u / d+q / d+a s_{4} / d}}{\left(\frac{p}{d}-\frac{q}{d}\right)!\left(\frac{q}{d}-\frac{u}{d}+\frac{a}{d} s_{4}\right)!\left(\frac{u}{d}-\frac{(a+1)}{d} s_{4}\right)!\left(s_{4} / d\right)!}$.
If we solve the same $P\left(H^{(J)}\right)$, using partition and substituting this partition in $T^{(J)}(\tau)$, we have

$$
T^{(J)}(\tau)=\left\{(p-q), \phi_{1}-u, u-(a+1) \phi_{2}, \phi_{2}\right\}
$$

where ϕ_{1} is the partition of ' u ' with parts $(1, a+1)$ of length ' u ' and ϕ_{2} is the partition of s_{4} with parts upto $\min \left(p, q,\left[\frac{u}{a+1}\right]\right)$. Applying $T^{(J)}(\tau)$ in Witt partition formula(eqn.(2.12)), we have

$$
W^{(J)}(\tau)=\sum_{\phi_{1} \cdot \phi_{2} \in T^{(J)}{ }_{(\tau)}} \frac{\left(p-u+\phi_{1}-1\right)!(-1)^{p-u+\phi_{1}}}{(p-q)!\left(\phi_{1}-u\right)!\left(u-(a+1) \phi_{2}\right)!\phi_{2}!} .
$$

From eqn.(2.13), the dimension of g_{α} is

$$
\begin{aligned}
& \operatorname{Dim} \mathrm{g}_{\alpha}=\sum_{d \mid \alpha} \frac{1}{d} \mu(d) W^{(J)}\left(\frac{\alpha}{d}\right) \\
= & \sum_{d \mid \alpha} \frac{1}{d} \mu(d) \sum_{n \in T^{(J)}\left(\frac{\alpha}{d}\right)} \frac{(|n|-1)!}{n!} \prod D^{(i)^{n_{i}}},
\end{aligned}
$$

Substituting the value of $W^{(J)}(\tau)$ from eqn. (3.1.2) in the above dimension formula, we have
$\left.\operatorname{Dim} \mathrm{g}_{\alpha}=\sum_{d \mid \alpha} \frac{1}{d} \mu(d) \sum_{n \in T^{(J)}\left(\frac{\alpha}{d}\right) \phi_{1}, \phi_{2} \in T^{(J)}(\tau)} \frac{\left(\frac{p}{d}-\frac{u}{d}+\frac{\phi_{1}}{d}-1\right)!(-1)^{p / d-u / d+\phi_{1} / d}}{d}\right)!\left(\frac{\phi_{1}}{d}-\frac{u}{d}\right)!\left(\frac{u}{d}-(a+1)\left(\phi_{2} / d\right)\right)!\left(\phi_{2} / d\right)!$
Which gives another form of dimension of g_{α}
Applying the value of s_{4} in (3.1.1), we get

$$
\begin{aligned}
W^{(J)}(\tau)= & \sum_{s_{4}=0}^{\min \left(p, q,\left[\frac{u}{a+1}\right]\right)} \frac{\left(p-u+q+a s_{4}-1\right)!(-1)^{p-u+q+a s_{4}}}{(p-q)!\left(q-u+a s_{4}\right)!\left(u-(a+1) s_{4}\right)!s_{4}!} \\
& =\frac{(p-u+q-1)!(-1)^{p-u+q}}{(p-q)!(q-u)!(u)!} \\
& +\frac{(p-u+q+a-1)!(-1)^{p-u+q+a}}{(p-q)!(q-u+a)!(u-(a+1))!1!}+\ldots \ldots u p t o \min (p, q,[u / a+1]) \\
& =\sum_{\phi_{1}, \phi_{2} \in T^{(J)}(\tau)} \frac{\left(p-u+\phi_{1}-1\right)!(-1)^{p-u+\phi_{1}}}{(p-q)!\left(\phi_{1}-u\right)!\left(u-(a+1) \phi_{2}\right)!\phi_{2}!} .
\end{aligned}
$$

where ϕ_{1} is the partition of ' u ' with parts $(1, a)$ of length ' $u+a s_{4}$ ' and ϕ_{2} is the partition of s_{4} with parts upto $\min \left(p, q,\left[\frac{u}{a+1}\right]\right)$.

Hence, we get the following theorem.
Theorem 3.1.1: For the extended-hyperbolic Borcherds superalgebra $\mathrm{g}=\mathrm{g}(A, \underline{m}, C)$ associated with the extended-hyperbolic Borcherds-Cartan super matrix $A=\left(\begin{array}{ccc}-k & -a & -b \\ -a & 2 & -1 \\ -b & -2 & 2\end{array}\right)$ with charge $\underline{m}=\{1,1,1\}$, consider the root
$\alpha=-p \alpha_{1}-q \alpha_{2}-u \alpha_{3} \in Q_{-}$. Then the dimension of g_{α} is
$\operatorname{Dim} \mathrm{g}_{\alpha}=\sum_{d \mid \alpha} \frac{1}{d} \mu(d) \sum_{s_{4}=0}^{\min \left(\frac{p}{d}, \frac{q}{d}, \mathrm{l} \frac{t}{d(a+1)} \mathrm{l}\right)} \frac{\left(\frac{p}{d}-\frac{u}{d}+\frac{q}{d}+\frac{a}{d} s_{4}-1\right)!(-1)^{p / d-u / d+q / d+a s_{4} / d}}{\left(\frac{p}{d}-\frac{q}{d}\right)!\left(\frac{q}{d}-\frac{u}{d}+\frac{a}{d} s_{4}\right)!\left(\frac{u}{d}-\frac{(a+1)}{d} s_{4}\right)!\left(s_{4} / d\right)!}$.
Moreover the following combinatorial identity holds:

$$
\sum_{s_{4}=0}^{\min \left(p, q,\left[\frac{u}{a+1}\right]\right)} \frac{\left(p-u+q+a s_{4}-1\right)!(-1)^{p-u+q+a s}{ }_{4}}{(p-q)!\left(q-u+a s_{4}\right)!\left(u-(a+1) s_{4}\right)!s_{4}!}=\sum_{\phi_{1}, \phi_{2} \in T^{(J)}(\tau)} \frac{\left(p-u+\phi_{1}-1\right)!(-1) p^{p-u+\phi_{1}}}{(p-q)!\left(\phi_{1}-u\right)!\left(u-(a+1) \phi_{2}\right)!\phi_{2}!} \ldots . .(3.1 .
$$

where ϕ_{1} is the partition of ' u ' with parts ($1, a$) of length ' $u+a s_{4}$ ' and ϕ_{2} is the partition of s_{4} with parts upto $\min \left(p, q,\left[\frac{u}{a+1}\right]\right)$.

Example 3.1.2: For the Borcherds-Cartan super matrix $A=\left(\begin{array}{ccc}-k & -1 & -b \\ -1 & 2 & -1 \\ -b & -2 & 2\end{array}\right)$, consider a root $\alpha=\tau=(5,4,3) \quad$ with $\mathrm{a}=1$.

Substituting $\alpha=\tau=(5,4,3), \quad a=1$ in eqn(3.1.1), we have

$$
\begin{aligned}
W^{(J)}(\tau) & =\sum_{s_{4}=0}^{\min \left(p, q,\left[\frac{u}{a+1}-1\right)\right.} \frac{\left(p-u+q+a s_{4}-1\right)!(-1)^{p-u+q+a s_{4}}}{(p-q)!\left(q-u+a s_{4}\right)!\left(u-(a+1) s_{4}\right)!s_{4}!} \\
& =\sum_{s_{4}=0}^{\min \left(5,4,\left[\frac{3}{2}\right]\right)} \frac{\left(5-3+4+s_{4}-1\right)!(-1)^{5-3+4+s_{4}}}{(5-4)!\left(4-3+s_{4}\right)!\left(3-2 s_{4}\right)!s_{4}!} \\
& =\frac{5!(-1)^{6}}{1!1!3!}+\frac{7!(-1)^{7}}{1!2!1!1!}=4.5-3.4 .5 .6 .7 \quad=-2500 .
\end{aligned}
$$

Substituting $\alpha=\tau=(5,4,3), \quad a=1$ in eqn(3.1.3), we have

$$
\begin{aligned}
W^{(J)}(\tau) & =\sum_{\phi_{\phi_{1}, \phi_{2} \in T^{(J)}(\tau)} \frac{\left(p-u+\phi_{1}-1\right)!(-1)^{p-u+\phi_{1}}}{(p-q)!\left(\phi_{1}-u\right)!\left(u-(a+1) \phi_{2}\right)!\phi_{2}!}}=\frac{5!(-1)^{6}}{1!1!3!}+\frac{7!(-1)^{7}}{1!2!1!1!}=-2500 .
\end{aligned}
$$

Hence the equality (3.1.4) holds

3.2.Dimension Formula and combinatorial identity for the Borcherds superalgebra which is an extension

 of B_{3}Here we are finding the superdimension Formula and combinatorial identity for the Borcherds superalgebra which is an extension of B_{3} using the same $J \subset \Pi^{r e}$ and solving $T^{(J)}(\tau)$ in two different ways.

Consider the extended-hyperbolic Borcherds superalgebra $\mathrm{g}=\mathrm{g}(A, \underline{m}, C)$ associated with the extended-
hyperbolic Borcherds-Cartan super matrix $A=\left(\left.\begin{array}{cccc}-k & -a & -b & -c \\ -a & 2 & -1 & 0 \\ -b & -1 & 2 & -1 \\ -c & 0 & -2 & 2\end{array} \right\rvert\,\right.$ and the corresponding coloring matrix $\mathrm{C}=\left(\left.\begin{array}{cccc}-1 & c_{1} & c_{2} & c_{3} \\ c_{1}^{-1} & 1 & c_{4} & c_{5} \\ c_{2}^{-1} & c_{4}^{-1} & 1 & c_{6} \\ c_{3}^{-1} & c_{5}^{-1} & c_{6}^{-1} & 1\end{array} \right\rvert\,\right.$ with $c_{1}, c_{2}, c_{3}, c_{4} \in C^{x}$.

Let $I=\{1,2,3,4\} \quad$ be the index set with charge $\underline{m}=\{1,1,1,1\}$.
Let us consider the root $\alpha=k_{1} \alpha_{1}+k_{2} \alpha_{2}+k_{3} \alpha_{3}+k_{4} \alpha_{4} \in Q$. We have $\theta(\alpha, \alpha)=(-1)^{k_{1}^{2}}$. Hence α is an even root(resp. odd root) if k_{1} is even integer(resp. odd integer). Also $T=\left\{\alpha_{1}\right\}$ and the subset $F \subset T$ is either empty or $\left\{\alpha_{1}\right\}$. Take $J \subset \Pi^{r e}$ as $J=\{2,3\}$. By Lemma 2.13, this implies that $W(J)=\left\{1, r_{4}\right\}$. From the equations (2.7) and (2.8),the homological space can be written as

$$
\begin{aligned}
& H_{1}^{(J)}=V_{J}\left(1\left(\rho-\alpha_{1}\right)-\rho\right) \oplus V_{J}\left(r_{4}(\rho)-\rho\right) \\
& \quad=V_{J}\left(-\alpha_{1}\right) \oplus V_{J}\left(-\alpha_{4}\right) \\
& H_{2}(J)=V_{J}\left(-\alpha_{1}-(c+1) \alpha_{4}\right) \\
& H_{k}^{(J)}=0 \quad \forall k \geq 3 \\
& \text { ThereforeH } \quad{ }^{(J)}=H_{1}^{(J)}=V_{J}\left(-\alpha_{1}\right) \oplus V_{J}\left(-\alpha_{4}\right)!V_{J}\left(-\alpha_{1}-(c+1) \alpha_{4}\right)
\end{aligned}
$$

with

$$
\begin{aligned}
& \operatorname{DimH}{\underset{(1,0,0,0)}{(J)}=-1 ; \quad \operatorname{DimH}{\underset{(1,1,0,0)}{(J)}=-1 ; \quad \operatorname{Dim} H}_{(1,1,1,0)}^{(J)}=-1 ;}_{\operatorname{DimH}}^{\substack{(J) \\
(1,1,1,1)}}=-1 ; \operatorname{DimH} \underset{(1,1,1, c+1)}{(J)}=-1
\end{aligned}
$$

Hence we have

$$
P\left(H^{(J)}\right)=\{(1,0,0,0) \quad,(1,1,0,0), \quad(1,1,1,0), \quad(1,1,1,1), \quad(1,1,1, \quad c+1)\} .
$$

Let $\alpha=\tau=-p \alpha_{1}-q \alpha_{2}-u \alpha_{3}-v \alpha_{4} \in Q_{-}$, with $(p, q, u, v) \in Z_{20} \times Z_{20} \times Z_{20} \times Z_{20}$. Then by proposition.(2.16), we get

$$
T^{(J)}(\tau)=\left\{\left(s_{1}, s_{2}, s_{3}, s_{4}, s_{5}\right) \mid s_{1}(1,0,0,0) \quad+s_{2}(1,1,0,0) \quad+s_{3}(1,1,1,0)\right.
$$

$$
\left.+s_{4}(1,1,1,1) \quad+s_{5}(1,1,1, \quad c+1)=(p, q, u, v)\right\} .
$$

This implies $\quad s_{1}+s_{2}+s_{3}+s_{4}=p$

$$
s_{2}+s_{3}+s_{4}+s_{5}=q
$$

$$
s_{3}+s_{4}+s_{5}=u
$$

$$
s_{4}+(c+1) s_{5}=v
$$

We have

$$
\begin{aligned}
& s_{1}=p-q+v+c s_{5} \\
& s_{2}=q-u \\
& s_{3}=u-v-c s_{5} \\
& s_{4}=q-p-s_{5} \\
& s_{5}=0 \text { to } \min \left(p, q, u,\left[\frac{v}{c+1}\right]\right) .
\end{aligned}
$$

Applying $s_{1}, s_{2}, s_{3}, s_{4}, s_{5}$ in Witt partition formula(eqn.2.12), we have

$$
\begin{equation*}
W^{(J)}(\tau)=\sum_{s_{5}=0}^{\min \left(p, q, u,\left[\frac{v}{c+1}\right]\right)} \frac{(q-1)!(-1)^{q}}{\left(p-q+v+c s_{5}\right)!(q-u)!\left(u-v-c s_{5}\right)!\left(q-p-s_{5}\right)!s_{5}!} . \tag{3.2.1}
\end{equation*}
$$

From equation(2.13), the dimension g_{α} is

$$
\operatorname{Dim} \mathrm{g}_{\alpha}=\sum_{d \mid \alpha} \frac{1}{d} \mu(d) W^{(J)}\left(\frac{\alpha}{d}\right)
$$

$$
=\sum_{d \mid \alpha} \frac{1}{d} \mu(d) \sum_{n \in T^{(J)}\left(\frac{\alpha}{d}\right)} \frac{(|n|-1)!}{n!} \prod D(i)^{n_{i}},
$$

Substituting the value of $W^{(J)}(\tau)$ from eqn. (3.3.1) in the above dimension formula, we have,

$$
\operatorname{Dim} \mathrm{g}_{\alpha}=\sum_{d \mid \alpha} \frac{1}{d} \mu(d) \sum_{s_{5}=0}^{\min \left(p / d, q / d, u / d,\left[\frac{v}{d(c+1)} \mathrm{l}\right)\right.} \frac{\left(\frac{q}{d}-1\right)!(-1)^{q / d}}{\left(\frac{p}{d}-\frac{q}{d}+\frac{v}{d}+c \frac{s_{5}}{d}\right)!\left(\frac{q}{d}-\frac{u}{d}\right)!\left(\frac{u}{d}-\frac{v}{d}-c \frac{s_{5}}{d}\right)!\left(\frac{q}{d}-\frac{p}{d}-\frac{s_{5}}{d}\right)!\frac{s_{5}}{d}!}
$$

If we solve the same $P\left(H^{(J)}\right)$ using partition and substituting the partition, we have

$$
T^{(J)}(\tau)=\left\{p-q+\phi_{1}, q-u, q-p-\phi_{2}, u-\phi_{1}, \phi_{2}\right\},
$$

where ϕ_{1} is partition of v with parts upto $(1, c+1)$ and of length v and ϕ_{2} is the partition of s_{5} with parts of s_{5} of length s_{5}.

Applying $T^{(J)}(\tau)$ in Witt partition formula (eqn.(2.12))

$$
W^{(J)}(\tau)=\sum_{\phi \in T^{(J)}(\tau)} \frac{(q-1)!(-1)^{q}}{\left(p-q+\phi_{1}\right)!(q-u)!\left(q-p-\phi_{2}\right)!\left(u-\phi_{1}\right)\left|\phi_{2}\right|!} .
$$

From equation(2.13), the dimension g_{α} is

$$
\begin{aligned}
\operatorname{Dim} \mathrm{g}_{\alpha} & =\sum_{d \mid \alpha} \frac{1}{d} \mu(d) W^{(J)}\left(\frac{\alpha}{d}\right) \\
& =\sum_{d \mid \alpha} \frac{1}{d} \mu(d) \sum_{n \in T^{(J)}\left(\frac{\alpha}{d}\right)} \frac{(|n|-1)!}{n!} \prod D(i)^{n_{i}},
\end{aligned}
$$

Substituting the value of $W^{(J)}(\tau)$ from eqn. (3.2.2) in the above dimension formula, we have,

$$
\operatorname{Dim} \mathrm{g}_{\alpha}=\sum_{d \mid \alpha} \frac{1}{d} \mu(d) \sum_{\phi_{1}, \phi_{2} \in T^{(J)}{ }_{(\tau)}} \frac{(q / d-1)!(-1)^{q / d}}{\left(p / d-q / d+\phi_{1}\right)!(q / d-u / d)!\left(q / d-p / d-\phi_{2}\right)!\left(u / d-\phi_{1}\right)\left|\phi_{2}\right|!}
$$

Now consider the equation

$$
\begin{aligned}
& \quad \sum_{s_{5}=0}^{\min \left(p, q, u,\left[\frac{v}{c+1}\right]\right)} \frac{(q-1)!(-1)^{q}}{\left(p-q+v+c s_{5}\right)!(q-u)!\left(u-v-c s_{5}\right)!\left(q-p-s_{5}\right)!s_{5}!} . \\
& \quad=\frac{(q-1)!(-1)^{q}}{(p-q+v)!(q-u)!(u-v)!(q-p)!} \\
& \quad+\frac{(q-1)!(-1)^{q}}{(p-q+v+c)!(q-u)!(u-v-c)!(q-p-1)!1!} \\
& \quad+\frac{(q-1)!(-1)^{q}}{(p-q+v+2 c)!(q-u)!(u-v-2 c)!(q-p-2)!2!} \\
& \quad+\frac{(q-1)!(-1)^{q}}{(p-q+v+3 c)!(q-u)!(u-v-3 c)!(q-p-3)!3!} \\
& \quad+\ldots \ldots . \text { upto } s_{5}=\min \left(p, q, u,\left[\frac{v}{c+1}\right]\right) .
\end{aligned}
$$

$$
=\sum_{\phi_{1}, \phi_{2} \in T^{(J)}(\tau)} \frac{(q-1)!(-1)^{q}}{\left(p-q+\phi_{1}\right)!(q-u)!\left(q-p-\phi_{2}\right)!\left(u-\phi_{1}\right)\left|\phi_{2}\right|!}
$$

where ϕ_{1} is partition of v with parts upto $(1, c+1)$ and of length v and ϕ_{2} is the partition of s_{5} with parts of s_{5} of length s_{5}.
Hence we proved the following theorem.

Theorem 3.2.1: For the extended-hyperbolic Borcherds superalgebra $\mathrm{g}=\mathrm{g}(A, \underline{m}, C)$ associated with the
 $\alpha=\tau=-p \alpha_{1}-q \alpha_{2}-u \alpha_{3}-v \alpha_{4} \in Q_{-}$. Then the dimension of g_{α} is
$\operatorname{Dim} \mathrm{g}_{\alpha}=\sum_{d \mid \alpha} \frac{1}{d} \mu(d) \quad \sum_{s_{5}=0}$ $\frac{\left(\frac{q}{d}-1\right)!(-1)^{q / d}}{\left(\frac{p}{d}-\frac{q}{d}+\frac{v}{d}+c \frac{s_{5}}{d}\right)!\left(\frac{q}{d}-\frac{u}{d}\right)!\left(\frac{u}{d}-\frac{v}{d}-c \frac{s_{5}}{d}\right)!\left(\frac{q}{d}-\frac{p}{d}-\frac{s_{5}}{d}\right)!\frac{s_{5}}{d}!}$.
$\min \left(p / d, q / d, u / d,\left[\frac{v}{d(c+1)}\right]\right)$

Moreover the following combinatorial identity holds:

$$
\begin{align*}
& \sum_{s_{5}=0}^{\min \left(p, q, u,\left[\frac{v}{c+1}\right]\right)} \frac{(q-1)!(-1)^{q}}{\left(p-q+v+c s_{5}\right)!(q-u)!\left(u-v-c s_{5}\right)!\left(q-p-s_{5}\right)!s_{5}!}= \\
& \sum_{\phi_{1}, \phi_{2} \in T^{(J)}{ }_{(\tau)}} \frac{(q-1)!(-1)^{q}}{\left(p-q+\phi_{1}\right)!(q-u)!\left(q-p-\phi_{2}\right)!\left(u-\phi_{1}\right)\left|\phi_{2}\right|!} \ldots \ldots \ldots . .(3.2
\end{align*}
$$

where ϕ_{1} is partition of v with parts upto (1, c) and of length v and ϕ_{2} is the partition of s_{5} with parts of s_{5} of length s_{5}.

Example 3.2.2: For the Borcherds-Cartan super matrix $A=\left\{\left.\begin{array}{cccc}-k & -1 & -b & -c \\ -1 & 2 & -1 & 0 \\ -b & -1 & 2 & -1 \\ -c & 0 & -2 & 2\end{array} \right\rvert\,\right.$,
consider the root $\alpha=\tau=(7,6,4,3)=(p, q, u, v)$ with $\mathrm{c}=1$. Applying in equation (3.2.1), we have

$$
\begin{aligned}
\min \left(p, q, u,\left[\frac{v}{c+1} 1\right)\right. & \sum_{s_{5}=0} \frac{(q-1)!(-1)^{q}}{\left(p-q+v+c s_{5}\right)!(q-u)!\left(u-v-c s_{5}\right)!\left(q-p-s_{5}\right)!s_{5}!} \\
= & \sum_{s_{5}=0}^{1} \frac{(6-1)!(-1)^{6}}{\left(7-6+3+s_{5}\right)!(6-4)!\left(4-3-s_{5}\right)!\left(6-7-s_{5}\right)!s_{5}!} \\
= & \frac{5!(1)}{4!2!1!0!}+\frac{5!(1)}{5!2!0!0!1!} \\
= & \frac{5}{2}+\frac{1}{2}=3 .
\end{aligned}
$$

Consider the root $\tau=\alpha$ as (7,6,4,3) with $\mathrm{c}=1$. Applying in equation (3.2.2), we have

$$
\begin{aligned}
& \quad \sum_{\phi_{1}, \phi_{2} \in T^{(J)}(\tau)} \frac{(q-1)!(-1)^{q}}{\left(p-q+\phi_{1}\right)!(q-u)!\left(q-p-\phi_{2}\right)!\left(u-\phi_{1}\right)\left|\phi_{2}\right|!} \\
& =\frac{(6-1)!(-1)^{6}}{(7-6+3)!(6-4)!(4-3)!(6-7)!0!}+\frac{(6-1)!(-1)^{6}}{(7-6+3+1)!(6-4)!(4-3-1)!(6-7)!1!} \\
& =\frac{5}{2}+\frac{1}{2}=3 . \\
& \text { Hence the equality }(3.2 .3) \text { holds. }
\end{aligned}
$$

Remark: In the above two sections 3.1 and 3.2., the identities (3.1.4) and (3.2.3) hold for any root, because we have derived the identities by simply solving the $T^{(J)}(\tau)$ in two different ways.

Remark: It is hoped that, in general, superdimensions of roots and the corresponding combinatorial identities for Borcherds Superalgebras which are extensions of all finite dimensional Kac-Moody algebras and superdimensions for all other categories can also be found out.

REFERENCES

[1]. R. E. Borcherds(1988), Generalized Kac-Moody algebras, J. Algebra, 115, pp 501-512.
[2]. R. E. Borcherds(1992), Monstrous moonshine and Monstrous Lie Superalgebras, Invent.Math., 109, pp 405-444.
[3]. J. Feingold and I. B. Frenkel(1983), A hyperbolic Kac-Moody algebra and the theory of Siegal modular forms of genus 2, Math. Ann., 263, pp 87-144.
[4]. Frenkel.I.B, Kac.V.G.(1980). Basic representation of affine Lie algebras and dual resonance models.Invent.Math., 62, pp 23-66.
[5]. Hontz.J, Misra.K.C.(2002).Root multiplicities of the indefinite Kac-Moody algebras $H D{ }_{4}^{(3)}$ and $H G_{2}^{(1)}$. Comm. Algebra, 30, pp 2941-2959.
V.G.Kac.(1977).Lie superalgebras. Adv.Math.,26, pp 8-96.
[6]. Kac, V.G. (1978). Infinite dimensional algebras, Dedekind's η - function, classical Mobius function and the very strange formula, Adv. Math., 30, pp 85-136.
[7]. Kac.V.G.(1990). Infinite dimensional Lie algebras, 3rd ed. Cambridge: Cambridge University Press.
[8]. Kac.V.G. and Wakimoto.M(1994). Integrable highest weight modules over affine superalgerbas and number theory. IN: Lie Theory and Geometry.Progr.Math. Boston:Birkhauser,123, pp.415-456.
[9]. S. J. Kang(1993a), Kac-Moody Lie algebras, spectral sequences, and the Witt formula, Trans. Amer. Math. Soc. 339 , pp 463-495.
[10]. S. J. Kang(1993b), Root Multiplicities of the hyperbolic Kac-Moody Lie algebra $H A_{1}^{(1)}$, J. Algebra 160 , pp 492593.
[11]. S. J. Kang(1994a), Generalized Kac-Moody algebras and the modular function j, Math. Ann., 298 , pp 373-384.
[12]. S. J. Kang(1994b), Root multiplicities of Kac-Moody algebras, Duke Math. J., 74, pp 635-666.
[13]. S. J. Kang(1994c), On the hyperbolic Kac-Moody Lie algebra $H A_{1}^{(1)}$, Trans. Amer. Math. Soc., 341, pp 623-638.
[14]. S. J. Kang(1996), Root multiplicities of graded Lie algebras, in Lie algebras and Their Representations, S. J. Kang, M. H. Kim, I. S. Lee (eds), Contemp. Math. 194, pp 161-176.
[15]. S. J. Kang,(1998) Graded Lie superalgebras and the superdimension formula, J. Algebra 204, pp 597-655.
[16]. S. J. Kang and M.H.Kim(1997), Borcherds superalgebras and a monstrous Lie superalgebras. Math.Ann. 307, pp 677-694.
[17]. S. J. Kang and M.H.Kim(1999), Dimension formula for graded Lie algebras and its applications. Trans. Amer. Math. Soc. 351, pp 4281-4336.
[18]. S. J. Kang and D. J. Melville(1994), Root multiplicities of the Kac-Moody algebras $H A_{n}^{(1)}$, J.Algebra, 170 , pp 277-299.
[19]. S. Kass, R. V. Moody, J. Patera and R. Slansky(1990), "Affine Lie algebras, Weight multiplicities and Branching Rules ", 1, University of California Press, Berkeley.
[20]. K. Kim and D. U. Shin(1999), The Recursive dimension formula for graded Lie algebras and its applications, Comm. Algebra 27, pp 2627-2652.
[21]. Liu, L. S. (1992). Kostant's formula for Kac - Moody Lie superalgebras. J. Algebra 149, pp 155-178.
[22]. Miyamoto.M(1996).A generalization of Borcherds algebra and denominator formula, the recursive dimension formula. J.Algebra 180, pp631-651
[23]. M. Scheunert(1979), The theory of Lie Superalgebras.Lecture notes in Math. Vol. 716.
[24]. Berlin-Heidelberg- New York: Springer-Verlag.
[25]. N.Sthanumoorthy and A.Uma Maheswari(1996a), Purely Imaginary roots of Kac-Moody Algebras, Communications in Algebra (USA), 24 (2), pp 677-693.
[26]. N.Sthanumoorthy and A.Uma Maheswari(1996b), Root Multiplicities of Extended-Hyperbolic Kac-Moody Algebras, Communications in Algebra (USA), 24(14), pp-4495-4512.
[27]. N.Sthanumoorthy and P.L.Lilly(2000), On the Root systems of Generalized Kac-Moody algebras, The Journal of Madras University(WMY-2000, Special Issue)Section B Sciences, 52, pp 81-102.
[28]. N.Sthanumoorthy and P.L.Lilly(2002), Special Imaginary roots of Generalized Kac-Moody algebras, Communications in Algebra (USA),10, pp 4771-4787.
[29]. N.Sthanumoorthy and P.L.Lilly(2003), A note on purely imaginary roots of Generalized Kac-Moody algebras, Communications in Algebra (USA),31(11), pp 5467-5479.
[30]. N.Sthanumoorthy and P.L.Lilly(2004), On some classes of root systems of Generalized Kac-Moody algebras, Contemporary Mathematics, AMS (USA), 343, pp 289-313.
[31]. N.Sthanumoorthy, P. L. Lilly and A.Uma Maheswari(2004a), Root multiplicities of some classes of extended hyperbolic Kac-Moody and extended hyperbolic Generalized Kac-Moody algebras, Contemporary Mathematics,AMS (USA),343, pp 315-347.
[32]. N.Sthanumoorthy, P.L.Lilly and A.Uma Maheswari(2004b), Extended Hyperbolic Kac-Moody Algebras EHA ${ }_{2}^{(2)}$: Structure and root multiplicities, Communications in Algebra(USA),32(6),pp 2457-2476 .
[33]. N.Sthanumoorthy and P.L.Lilly(2007a), Complete Classifications of Generalized Kac-Moody Algebras possessing Special Imaginary Roots and Strictly imaginary Property,Communications in Algebra (USA),35(8),pp. 2450-2471.
[34]. N.Sthanumoorthy and P.L.Lilly(2007b), Root multiplicities of some generalized Kac-Moody algebras, Indian Journal of Pure and Applied Mathematics, 38(2),pp 55-78.
[35]. N.Sthanumoorthy, P.L.Lilly and A.Nazeer Basha(2007), Special Imaginary roots of BKM Lie superalgebras, International Journal of Pure and Applied Mathematics (Bulgaria),Vol. 38, No. 4, pp 513-542.
[36]. N.Sthanumoorthy, P.L.Lilly and A.Nazeer Basha(2009a), Root Supermultiplicities of some Borcherds Superalgebras, Communications in Algebra(USA), 37(5), pp 1353-1388.
[37]. N.Sthanumoorthy, P.L.Lilly and A.Nazeer Basha(2009b), Strictly Imaginary Roots and Purely Imaginary Roots of BKM Lie Superalgebras, Communications in Algebra(USA),37(7), pp 2357-2390.
[38]. N.Sthanumoorthy and K.Priyadharsini(2012), Complete classification of BKM Lie superalgebras possessing strictly imaginary property,' Applied Mathematics, SAP(USA),2(4), pp 100-115. 39.
[39]. N.Sthanumoorthy and K.Priyadharsini(2013), Complete classification of BKM Lie superalgebras possessing special imaginary roots, 'Comm. in Algebra (USA)', 41(1), pp 367-400.
[40]. N.Sthanumoorthy and K.Priyadharsini(2014), Root supermultiplicities and corresponding combinatorial identities for some Borcherds superalgebras, Glasnik Mathematicki, Vol. 49(69)(2014), 53-81.

