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--------------------------------------------------------ABSTRACT-------------------------------------------------- 
We consider the unsteady MHD free convection flow of an incompressible electrically conducting second grade 

fluid bounded by an infinite vertical porous surface in the presence of heat source and chemical reaction in a 

rotating. The flow through porous medium is governed by Brinkman’s model for the momentum equation. In the 

undisturbed state, both the plate and fluid in porous medium are in solid body rotation with the same angular 

velocity about normal to the infinite vertical plane surface. The vertical surface is subjected to the uniform 

constant suction perpendicular to it and the temperature on the surface varies with time about a non-zero 

constant mean while the temperature of free stream is taken to be constant. The exact solutions for the velocity, 

temperature and concentration are obtained making use of perturbation technique. The velocity expression 

consists steady state and oscillatory state. It reveals that, the steady part of the velocity field has three layer 

characters while the oscillatory part of the fluid field exhibits a multi layer character. The influence of various 

flow parameters on the velocity, temperature and concentration is analysed graphically, and computational 

results for the skin friction, Nusselt number and Sherwood number are also obtained in the tabular forms. 
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1. Introduction 
 In the study of non-Newtonian fluids, it has been mainly motivated to their importance in the problems 

from applications of engineering and chemical industry. The partial differential equations usually appear in 

many areas of the natural and physical sciences. They describe different physical systems, ranging from 

gravitational to fluid dynamics and have been used to solve problems in the chemistry, mathematical biology, 

solid state physics etc. We mentioned the most interesting studies of second grade fluids [9, 7, 6, , 2, 4]. Veera 

Krishna.M  and S.G. Malashetty [12] discussed unsteady flow of an incompressible electrically conducting 

second grade fluid through a composite medium in a rotating parallel plate channel and the problem extended 

for taking the hall currents by Veera Krishna.M  and S.G. Malashetty [13]. The heat transfer rates can be 

controlled by using a magnetic field. The inclusion of magnetic field in the study of second grade fluid flow has 

many practical applications for example, the cooling of turbine blades. Magneto hydro dynamics provides a 

mean of cooling the turbine blade and keeping the structural integrity of the nose cone. Anand Rao [1] studied 

the magneto-convective flow in a Darcian porous medium channel. Ram [10] discussed analytically the transient 

hydro magnetic natural convection flow with Hall current effects in a Darcian regime and this extended to 

consider the supplementary effects of mass transfer [11]. Krishna et al. [8] have studied hydro magnetic 

convection boundary layer heat transfer through porous medium in a rotating parallel plate channel, presenting 

analytical solutions and discussing the structure of the different boundary layers formed. Zakaria [14] studied on 

the magneto hydro dynamic transient natural convection flow of a couple stress fluid through porous medium 

with relaxation effects also using the state space solution approach.  

Recently, Bég et al. [3] have studied the oscillatory hydro magnetic convection through porous regime using a 

perturbation method. El-Kabeir et al. [5] discussed the group transformation method to study transient hydro 

magnetic convection boundary layer flow through porous medium.  

In this paper, the unsteady MHD free convection flow of an incompressible electrically conducting second grade 

fluid bounded by an infinite vertical porous surface in the presence of heat source and chemical reaction in a 

rotating system. 

 

 

1.1. Basic Equations: 
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An incompressible simple fluid is defined as a material whose state of present stress is determined by 

the history of the deformation gradient without a preferred reference configuration, its constitutive equation can 

be written in the form of a functional. 

T (t) = -pI + 


 0s

 ,SF
t

t
                                                                                                   (1.1.1) 

 Where pI is the undetermined part of the stress tensor and F is the deformation gradient. The 

constitutive equation for the stress T in an incompressible fluid of second grade is given by 

T (t) = - pI+
12211

AAA                                                                (1.1.2) 

 Where   is the dynamic viscosity
1

 , 
2

  are the normal stress moduli and the kinematical tensors 

1
A  and 

2
A  are defined through [Rivlin et.al. [29]]. 


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A  (Grad V) +   ,gradV
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AgradV ,                                                         (1.1.3) 

 Where, V is the velocity, grad the gradient operator and d/dt the material time derivative. Dunn and 

Fosdick [6] found that if the fluid modelled by (1.1.2) is to be compatible with thermodynamics, in the sense 

that all motions of the fluid meet the Clausius-Duhem inequality and the assumption that the specific Helmholtz 

free energy of the fluid takes its minimum value in equilibrium, then the material moduli must satisfy, 

0,0,0
211
                                                             (1.1.4) 

 This, then, was shown to give to the theory a rather well behaved and pleasant stability and bounded 

ness structure. It was also shown that if 
1

  was taken negative, the remainder of (1.1.4) being preserved, then in 

quite arbitrary flows instability and unbounded ness were unavoidable. However, it is well known that for most 

non-Newtonian fluids of current rheological interest, conclusions (1.1.4) are contradicted by experiments.  

,0    ,0
1
        ,0

21
                                                            (1.1.5) 

 Which were supposedly obtained by data reduction from experiments for those fluids which the 

experimentalists presumed to be constitutively described by (1.1.2) as a second grade fluid, and they showed 

that such values for the material moduli led to anomalous behavior, thus questioning whether the fluid under 

consideration in the experiments could be described as a second grade fluid. 

The unsteady hydro magnetic flow in a rotating co- ordinate system is governed by the equation of 

motion, continuity equation and the Maxwell equations in the form. 

BJTrVVV
t

V

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

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





.)(2).(                                             (1.1.6) 

0.  V                                                   (1.1.7) 

0.  B                                                   (1.1.8) 
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m

                                                   (1.1.9) 

t
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E




                                                  (1.1.10) 

 Where, J is the current density, B is the total magnetic field, E is the total electric field, 
m

   is the 

magnetic permeability and r is radial co-ordinate given by 
222

yxr  . 

  

II. Mathematical Formulation and Solution of the Problem: 
 We consider the unsteady free convection flow of viscous incompressible second grade fluid bounded 

by a vertical porous surface in a rotating system in the presence of heat source and chemical reaction under the 

influence of uniform transverse magnetic field of strength B0. The temperature on the surface varies with the 

time about a non-zero constant mean while the temperature of free stream is taken to be constant. We consider 

that the vertical infinite porous plate rotates with the constant angular velocity about an axis is perpendicular to 

the vertical plane surface. The physical configuration of the problem is as shown in Fig. 1. 
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We choose a Cartesian co-ordinate system 

),,( zyxO
 
such that x, y axes respectively are in 

the vertical upward and perpendicular directions on 

the plane of the vertical porous surface 0z , 

while z-axis normal to it. The interaction of coriolis 

force with the free convection sets up a secondary 

flow in addition to primary flow and hence the flow 

becomes three dimensional.  

With the above frame of reference and 

assumptions, all the physical variables are 

functions of z and t alone.  Making use of the 

governing equation the unsteady hydro magnetic 

flow in a rotating co- ordinate system is governed 

by the equation of motion, continuity equation and 

the  Maxwell equation 1.1.6,the constitutive 

equations 

 

              

                                                    
 and keeping in view of the flow configuration of the problem, the unsteady hydro magnetic flow in a rotating 

system is governed by the equation of motion for momentum, the conservation of mass, energy and the equation 

of mass transfer, under usual Boussinesq approximation, are given by 

 

0




z

w                        (2.1) 

)()(2

1

2

0

2

3

1

2

2


























CCgTTgu

K
u

B

tz

u

z

u
v

z

u
w

t

u













                  

(2.2) 

v
K

v
B

tz

v

z

v
u

z

v
w

t

v

1

2

0

2

3

1

2

2

2









 




















                                                                                

(2.3) 

w
kz

p 









1
0

                                                                                                                                                         

(2.4) 

)(
12

2

















TTS

z

T

C

k

z

T
w

t

T

p
                                                                                                        

(2.5) 

)(
2

2

















CCK

z

C
D

z

C
w

t

C

C

                                                                                                         (2.6) 

The corresponding boundary conditions are 
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 Where 1  and   is the frequency of oscillation. There will be always some fluctuation in the 

temperature, the plate temperature is assumed to vary harmonically with time. It varies from 

)(


 TTT
ww

 as t  varies from 0  to 




2
. Now there may also occur some variation in suction at the plate 

due to the variation of the temperature, here we assume that, the frequency of suction and temperature variation 

are same. 

 Integrating the equation (2.1), we get 

)1()(
0

ti
eAwtw


                            (2.8) 

 Where A  is the suction parameter, 
0

w  is the constant suction velocity and   is the small positive 

number such that .1A  The equation (2.4) determines the pressure distribution along the axis of rotation and 
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the absence of 
y

p




 in the equation (2.3) implies that there is a net cross flow in the y direction. We choose, 

ivuq   and taking into consideration (2.8), the momentum equation (2.2) and (2.3) can be written as 
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Introducing the following non-dimensional quantities: 
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 Making use of non-dimensional quantities (dropping asterisks), the governing equations (2.9), (2.5) and 

(2.6) can be written as 
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The corresponding non-dimensional boundary conditions 
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In order to reduce the system of partial differential equations (2.10) – (2.12) under their boundary conditions 

(2.13) and (2.14), to a system of ordinary differential equations in the non-dimensional form, In view of the 

equation (2.8) and oscillating plate temperature T , The solution form of the equations (2.10), (2.11) and (2.12) 

are, 
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 These equations (2.15) – (2.17) are valid for small amplitude of oscillation. Substituting from (2.15) to 

(2.17) into the system of equations (2.10) – (2.12) respectively, and equating the harmonic and non-harmonic 

terms, we get 
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The corresponding boundary conditions 
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 The solutions of the equations (2.20) and (2.21) using the boundary conditions (2.24) and (2.25), we 

obtain, 
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The equation (2.16) becomes, 
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          The solutions of the equations (2.23) and (2.24) using the boundary conditions (2.24) and (2.25), we 

obtain, 
zC

ezC 2)(
0

 ,
  

)()( 244

3

2

1

zCzaza
ee

C

CScA
ezC   

The equation (2.16) becomes, 

tizCzazazC
eee

C

CScA
eetzC

















 )(),( 2442

3

2                                                                                     (2.27) 

          The solutions of the equations (2.18) and (2.19) using the boundary conditions (2.24) and (2.25), we 

obtain, 
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The equation (2.28) reveals that the steady part of the velocity field has three layer character while the 

oscillatory part of the fluid field exhibits a multilayer character. From equations (2.26) and (2.27), we observe 

that in case of considerably slow motion of the fluid. i.e., when the viscous dissipation term is neglected, the 

temperature profiles are mainly affected by Prandtl number (Pr) and Source parameter (S): and the concentration 

profiles are affected by Schimdt number (Sc) and chemical reaction parameter (KC) of the fluid respectively.  

Considering 
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 Now it is convenient to write the primary and secondary velocity fields in terms of the fluctuating parts, 

separating the real and imaginary parts from the equation (2.28) and taking only the real parts as they have 

physical significance. The velocity distribution of the flow field can be expressed as in fluctuating parts,  
ti

ezqzqtzq


 )()(),(
10


 

tvtvituituivu

titivuivuivu





sincossincos

)sin(cos)()(

111100

1100





 

Comparing real and imaginary parts, 
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Hence the expression for the transient velocity profiles for  
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Skin friction: 

The non-dimensional skin friction at the plate 0z  in term of amplitude and phase angle is given by  
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Rate of heat transfer (Nusselt number): 

 The rate of heat transfer co-efficient at the plate 0z  in term of amplitude and phase angle is given 

by  
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Rate of mass transfer (Sherwood number): 

 The rate of mass transfer co-efficient at the plate 0z  in term of amplitude and phase angle is given 

by  
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III. Results and Discussion: 

The unsteady magneto hydro dynamic free convection flow of an incompressible electrically 

conducting second grade fluid bounded by an infinite vertical porous surface in a rotating system under the  of 

heat source and chemical reaction. The closed form solutions for the velocity ivuq  , temperature   and 

concentration C  are obtained making use of perturbation technique. The velocity expression consists of steady 

state and oscillatory state. It reveals that, the steady part of the velocity field has three layer characters while the 

oscillatory part of the fluid field exhibits a multi layer character. The figures (1-3) shows the effects of non-

dimensional parameters M the Hartmann number,   the second grade fluid parameter, K permeability 

parameter, R rotation parameter, S heat source parameter, Gr Grashof number, Gm mass Grashof number, Kc 

chemical reaction parameter, Pr the Prandtl number and t time; the Figure (4) exhibit the temperature 

distribution with different variations in the governing parameters S and Pr, and the Figure (5) depicts the 

concentration profiles with variations in Schmidt number Sc and chemical reaction parameter  Kc,    the 

frequency of oscillation and time t. 

 It is noticed that, from the Figures 1(a-f) the magnitude of the velocity u reduces with increasing the 

intensity of the magnetic field (Hartmann number M) while it enhances with increasing second grade fluid 

parameter )(  or permeability of porous medium (K) throughout the fluid region. The velocity component v 

enhances with increasing (M) or second grade fluid parameter ( ) or permeability of porous medium (K). The 

application of the transverse magnetic field plays the important role of a resistive type force (Lorentz force) 

similar to drag force (that acts in the opposite direction of the fluid motion) which tends to resist the flow 

thereby reducing its velocity. The resultant velocity q  increasing with second grade fluid parameter )( , 

permeability of porous medium (K) and reduces with increasing Hartmann number (M).  

We observe that lower the permeability of porous medium lesser the fluid speed in the entire fluid region. From 

the Figures 2 (a-h) depicts the velocity component u reduces with increasing the rotation parameter (R) while it 

enhances with increasing source parameter (S), Grashof number (Gr) and mass Grashof number (Gm). The 

profiles show the magnitude of the velocity component v reverse trend whenever there is increasing rotation 

parameter (R) or source parameter (S) or Grashof number (Gr) and mass Grashof number (Gm). The resultant 

velocity q  increases with increasing rotation parameter (R) or Grashof number (Gr) and mass Grashof number 

(Gm) and reduces with increasing source parameter (S). Further, it is to observed that from Figures 3 (a-h) the 

velocity u reduces and v enhances with increasing Schmidt number (Sc), first the velocity u increases and then 

experiences retardation where as v reduces in the entire fluid region with increasing chemical reaction parameter 

(Kc). With increasing Prandtl number (Pr) the velocity u reduces and v enhances in the complete flow field. This 

implies that an increase in Prandtl number Pr leads to fall the thermal boundary layer flow. This is because 

fluids with large have low thermal diffusivity which causes low heat penetration resulting in reduced thermal 

boundary layer. Likewise the velocity u enhances and v decreases with increasing the frequency of oscillation 

)(  and time (t). The resultant velocity reduces with increasing chemical reaction parameter (Kc) or Schmidt 

number (Sc) and increases with increasing Prandtl number (Pr) and time (t). 

 The temperature profiles exhibit in the Figures 4(a-d) for different variations in source parameter (S), 

Prandtl number (Pr), the frequency of oscillation )(  and time t. It is observed that Prandtl number (Pr) leads to 

decrease the temperature uniformly in all layers being the heat source parameter fixed. It is found that the 

temperature decreases in all layers with increase in the heat source parameter (S). It is concluded that the heat 

source parameter (S) and Prandtl number (Pr) reduces the temperature in all layers. The temperature increases 

with increasing the frequency of oscillation )(  and time t.   

The concentration profiles are shown in the Figures 5(a-d) for different variations in Schmidt number (Sc), the 

chemical reaction parameter (Kc), the frequency of oscillation )(  and time (t). It is noticed that the 

concentration decreases at all layers of the flow for heavier species such as CO2, H2O and NH3 having Schmidt 

number 0.3, 0.6 and 0.78 respectively. It is observed that for heavier diffusing foreign species, i.e. the velocity 

reduces with increasing Schmidt number (Sc) in both magnitude and extent and thinning of thermal boundary 

layer occurs. Likewise, the concentration profiles decrease with increase in chemical reaction parameter (Kc). It 

is concluded that the Schmidt number and the chemical reaction parameter reduces the concentration in all 

layers. The concentration increases with increasing the frequency of oscillation )(  and time t. 



Heat And Mass Transfer On Unsteady Mhd Free… 

www.theijes.com                                                   The IJES                                                         Page 24 

 It is noted from the table 1 that the magnitudes of both the skin friction components 
xz

  and 
yz

  

increase with increase in permeability parameter (K), thermal Grashof number (Gr) and mass Grashof number 

(Gm), and where as it reduces with increase in Hartmann number (M), second grade fluid parameter )( , heat 

source parameter (S), Schmidt number (Sc), chemical reaction parameter (Kc) anf Prandtl number (Pr). Likewise 

the rotation parameter (R) enhances skin friction component 
xz

  and reduces skin friction component
yz

 .  From 

the table 2 that The magnitude of the Nusselt number (Nu) increases for the parameters heat source parameter 

(S) and Prandtl number (Pr) or time (t), and it reduces with the frequency of oscillation )( . Also from the table 

4, the similar behaviour is observed. The magnitude of the Sherwood number (Sh) increases for increasing the 

parameters Schmidt number (Sc) and chemical reaction parameter (Kc) or time (t) and reduces with increasing 

the frequency of oscillation )(  

  
Fig. 1.  The velocity profiles for the components u and v 

with 05.0A ; 2/5  ; 001.0 , 2.0t  
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Fig. 2.  The velocity profiles for the components u and v 

with 05.0A ; 2/5  ; 001.0 , 2.0t  
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Fig. 3.  The velocity profiles for the components u and v                                                                            

with 05.0A ; 2/5  ; 001.0 , 2.0t  

 
 

 
Fig. 4.  The temperature profiles for with 05.0A ; 2/5  ; 001.0 , 2.0t  
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Fig. 5.  The Concentration profiles for with 05.0A ; 2/5  ; 001.0 , 2.0t  

 

 

Table. 1. Skin Friction 
M   K R S Gr Gm Sc Kc Pr 

xz
  yz

  

2 1 2 1.2 2 5 10 0.22 2 0.71 6.01449 -1.79578 

3 1 2 1.2 2 5 10 0.22 2 0.71 5.61228 -1.33598 

4 1 2 1.2 2 5 10 0.22 2 0.71 5.24833 -1.03404 

2 2 2 1.2 2 5 10 0.22 2 0.71 6.01413 -1.79617 

2 3 2 1.2 2 5 10 0.22 2 0.71 6.01393 -1.79633 

2 1 3 1.2 2 5 10 0.22 2 0.71 6.08210 -1.89415 

2 1 4 1.2 2 5 10 0.22 2 0.71 6.11556 -1.94614 

2 1 2 1.4 2 5 10 0.22 2 0.71 5.78945 -1.93967 

2 1 2 1.8 2 5 10 0.22 2 0.71 5.36688 -2.13303 

2 1 2 1.2 3 5 10 0.22 2 0.71 5.89153 -1.73822 

2 1 2 1.2 4 5 10 0.22 2 0.71 5.79982 -1.69880 

2 1 2 1.2 2 6 10 0.22 2 0.71 6.34324 -1.87197 

2 1 2 1.2 2 7 10 0.22 2 0.71 6.67199 -1.94816 

2 1 2 1.2 2 5 5 0.22 2 0.71 3.82912 -1.08836 

2 1 2 1.2 2 5 8 0.22 2 0.71 5.14034 -1.51281 

2 1 2 1.2 2 5 10 0.3 2 0.71 5.76037 -1.61967 

2 1 2 1.2 2 5 10 0.6 2 0.71 5.10555 -1.23180 

2 1 2 1.2 2 5 10 0.22 4 0.71 5.58892 -1.50959 

2 1 2 1.2 2 5 10 0.22 7 0.71 5.19728 -1.28158 

2 1 2 1.2 2 5 10 0.22 2 3 5.24164 -1.51814 

2 1 2 1.2 2 5 10 0.22 2 7 4.87287 -1.44886 
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Table. 2. Nusselt Number 

S Pr   t  Nu 

2 0.71 2/5  0.2 -1.59653 

3 0.71 2/5  0.2 -1.85503 

4 0.71 2/5  0.2 -2.07512 

2 3 2/5  0.2 -4.36861 

2 7 2/5  0.2 -8.61827 

2 0.71 2/7  0.2 -1.59538 

2 0.71 2/9  0.2 -1.59431 

2 0.71 2/5  0.4 -1.59854 

2 0.71 2/5  0.6 -1.60026 
 

Table. 3. Sherwood Number 

Sc Kc   t  Sh 

2 0.22 2/5  0.2 -0.781334 

3 0.22 2/5  0.2 -0.928700 

4 0.22 2/5  0.2 -1.053333 

2 0.3 2/5  0.2 -0.937762 

2 0.6 2/5  0.2 -1.434060 

2 0.22 2/7  0.2 -0.780754 

2 0.22 2/9  0.2 -0.778487 

2 0.22 2/5  0.4 -0.782446 

2 0.22 2/5  0.6 -0.783434 

 

III. Conclusions 

 The resultant velocity increasing with second grade fluid parameter )( , permeability of porous medium (K) and 

reduces with increasing Hartmann number (M). Lower the permeability of porous medium lesser the fluid speed in the entire 

fluid region. The resultant velocity increases with increasing rotation parameter (R) or Grashof number (Gr) and mass 

Grashof number (Gm) and reduces with increasing source parameter (S). The resultant velocity reduces with increasing 

chemical reaction parameter (Kc) or Schmidt number (Sc) and increases with increasing Prandtl number (Pr) and time (t). 

The heat source parameter (S) and Prandtl number (Pr) reduces the temperature in all layers. The temperature increases with 

increasing the frequency of oscillation ( ) and time. The Schmidt number and the chemical reaction parameter reduce the 

concentration in all layers. The concentration increases with increasing the frequency of oscillation ( ) and time t. The  skin 

friction components 
xz

  and 
yz

  increase with increase in permeability parameter (K), thermal Grashof number (Gr) and 

mass Grashof number (Gm), and where as it reduces with increase in Hartmann number (M), second grade fluid parameter 

( ), heat source parameter (S), Schmidt number (Sc), chemical reaction parameter (Kc) anf Prandtl number (Pr). The 

rotation parameter (R) enhances skin friction component 
xz

  and reduces skin friction component
yz

 .  The heat transfer 

coefficient increases with increasing heat source parameter (S) and Prandtl number (Pr) or time span (t), and it reduces with 

the frequency of oscillation ( ). The Sherwood number enhances for increasing the parameters Schmidt number (Sc) and 

chemical reaction parameter (Kc) or  time span (t)  and reduces with increasing the frequency of oscillation ( ). 
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