Preparation and Characterization of Activated Carbon from

Hura Crepitans Linn Seed Shells

E. W. NSI¹, A. E. AKPAKPAN¹, E.J.UKPONG¹, U. D. AKPABIO²

¹Department of Chemistry Akwa Ibom State University, Ikot Akpaden, Mkpat Enin L.G.A., Akwa Ibom State, Nigeria
²Department of Chemistry University of Uyo, Uyo, Akwa Ibom State, Nigeria

ABSTRACT

Activated carbons were thermally prepared from _Hura Crepitans_ L. seed shells. Zinc chloride (ZnCl₂) and Phosphoric acid (H₃PO₄) were separately used as the activating agents. The activated carbons obtained were characterized by determining the percentage yield, moisture content, ash content and percentage fixed carbon. The adsorption of methylene blue by the activated carbon was done using 0.1 to 0.5g of the activated carbon. The results revealed that the percentage yield and ash content of H₃PO₄ impregnated activated carbon was higher than ZnCl₂ impregnated activated carbon. On the other hand ZnCl₂ impregnated activated carbon had higher moisture content and percentage fixed carbon. It was also revealed that ZnCl₂ impregnated activated carbon had greater adsorption capacity than H₃PO₄ impregnated activated carbon. However it was found that the higher the adsorbent (activated carbon) dosage, the higher the adsorption capacity.

Keywords: _Hura Crepitans_ L., activation, activated carbon, Zinc chloride and Phosphoric acid

I. INTRODUCTION

Activated Carbons are carbon of highly micro-porous form with both high internal surface area and porosity, and commercially, the most common adsorbents used for the removal of organic pollutant from air, water and industrial products (Tsai et al., 2001).

Food and pharmaceutical industries uses activated carbon in the removal of compounds that are responsible for undesirable colour, odour and taste in their products. Activated carbon is also used in gas cleaning applications where it is extensively used in air filters at industrial level as well as in air condition equipment (Vigayan et al., 2012).

Commercial activated carbon is produced from bituminous or lignite coal. Because of the environmental problems and increasing high cost associated with petroleum products, research have been reported on the production of activated carbon from wood which is environmentally friendly and cost effective. However, because of the environmental problem associated with deforestation, seed shells have been used to replace wood for the production of activated carbon. These products are highly cost effective as most of the seed shells are discarded as waste materials, and the activated carbon produced from them have similar potential in industrial application.

The production of activated carbon from coconut shells, palm kernel shells, _Canarium schequinflurthi_ nut shell, corn cob and other seed shells have been reported (OlAwale and Ajayi, 2007; Diya et al., 2008; Chang et al, 2001 and Vijayan et al., 2012).

Hura crepitans L., the sand box tree also known as possum-wood, is an evergreen tree of the spurge family Euphorbiacae. The wood is used for furniture under the name “Hura”. The oil extracted from the seed is used in the production of alkyl resin (Ezeh et al., 2012) and metallic soap (Umoren et al., 2013). The seed pods (shells) are not utilized for any industrial purposes; hence they are waste and thereby pollute the environment. These shells are hard and therefore suitable for the production of activated carbon which can be used for the treatment of waste water from textile industries and can also be used in food and pharmaceutical industries to remove pollutants/contaminants. Therefore, the aim and objectives of this work is to prepare activated carbon from _Hura crepitans_ L. shells, characterize and apply it in the removal of methylene blue from contaminated water.

II. MATERIAL AND METHODS

2.1 Sample Collection

The seed shells of _Hura crepitans_ L. also known as sand box were collected from the University of Uyo Town Campus. The samples were cut into chips of workable size.
2.2 Activation-Carbonization
Activation of the sample was carried out in a muffle furnace using the solution of zinc chloride (ZnCl₂) and phosphoric acid (H₃PO₄) separately as the activating agents. 400g of the sample chips were charred in the furnace at 500°C for 2 hours. 30g of the charred sample was weighed into a beaker containing 300cm³ of 1M solution of each activating chemical. The contents of each beaker was thoroughly mixed and heated until all the activating liquor was absorbed by the sample.
The samples were then transferred into the crucible and dried in the oven at 100°C for 12 hours. The crucible was then placed in the furnace and fired at 650°C for 2 hours. The sample was then removed from the furnace and cooled in the desiccator, it was then washed with 0.5M NaOH followed by distilled water to a neutral pH. The activated carbons obtained were dried in the oven at 100°C to a constant weight.

2.3 Characterization of the Activated Carbon.
- **Percentage Yield**
The yield of the activated carbon was calculated using:

\[
\text{Percentage yield} = \frac{M_2}{M_1} \times 100\%
\]

Where:
- \(M_1\) = Weight of the charred sample
- \(M_2\) = Weight of the activated carbon

- **Moisture content**
Moisture content of the activating carbon was calculated using:

\[
\text{Percentage moisture content} = \frac{M_1 - M_2}{M_1} \times 100\%
\]

Where:
- \(M_1\) = Weight of the activated carbon before drying in the oven
- \(M_2\) = Weight of the activated carbon after drying in the oven

- **Determination of Ash content and percentage fixed carbon**
Ash content of the activated carbon was determined as follows: 2g of each activated carbon sample was put in a crucible and fired at 900°C in a muffle furnace for 3 hour. The resultant ash was removed and allowed to cool in the desiccator.
Ash content was calculated using:

\[
\text{% Ash content} = \frac{W_2}{W_1} \times 100\%
\]

Where:
- \(W_1\) = Weight of the activated carbon
- \(W_2\) = Weight of the ash

Percentage fixed carbon was calculated from the ash content in accordance with the method reported by Ogbonnaya (1992) and Duff and Ross, (1988).

2.4 Adsorption Study
The adsorption potentials of the activated carbon sample obtained from different activating agents were determined according to the method reported by Odebunmi and Okelola (2001). In this method, batch sorption experiments were carried out at room temperature. 0.1 to 0.5g of the activated carbon was added into a beaker containing 100ml of 250mg/l methylene blue solution. The mixture was thoroughly mixed and shaken for 1 hour using a mechanical shaker. After shaking, the suspensions were filtered and remaining concentration was determined spectrophotometrically at \(\lambda_{\text{max}}\) of 250nm using UV/V spectrophotometer. The amount of methylene blue adsorbed from each solution was calculated as shown below.

\[
\text{Percentage methylene blue adsorbed} = \frac{(C_0 - C)}{C_0} \times 100\%
\]

Where:
- \(C_0\) (mg/L) = Initial concentration of methylene blue
- \(C\) (mg/L) = Post-adsorption concentration of methylene blue
III. RESULTS AND DISCUSSION

The percentage yield, ash content, moisture content and percentage fixed carbon of the activated carbon are presented in Table 1. These parameters are factors which could influence the adsorption capacity of the activated carbon (Okeola et al., 2011). Result revealed that the percentage yield of H₃PO₄ activated carbon was 44.90% and that of ZnCl₂ activated carbon was 31.94%. The decrease in the yield of ZnCl₂ activated carbon may be due to the reactions between ZnCl₂ and the sample. The ash content and percentage fixed carbon compare favourable with those for the commercial activated carbon. Also the ash content of H₃PO₄ activated carbon compare favourable with that of H₃PO₄, ZnCl₂ and KOH activated carbon from maize cob (Odebunmi and Okeola, 2001) and NaCl activated carbon of Jatropha curcas seed coats (Okeola et al., 2011). The ash content obtained for ZnCl₂ activated carbon compare favourably with the value obtained Coconut shell (Odebunmi and Okeola, 2001). However, ZnCl₂ impregnated activated carbon has greater percentage fixed carbon than H₃PO₄ impregnated activated. There is a correlation between percentage fixed carbon and adsorption capacity. Sample with higher percentage fixed carbon are expected to have high adsorption capacities (Ogbonnaya, 1992). The moisture content of ZnCl₂ activated carbon was 31.94%. The decrease in the yield of ZnCl₂ activated carbon may be due to the reactions between samples.

<table>
<thead>
<tr>
<th>Activating Agent</th>
<th>H₃PO₄</th>
<th>ZnCl₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yield (%)</td>
<td>44.90</td>
<td>31.94</td>
</tr>
<tr>
<td>Moisture content (%)</td>
<td>5</td>
<td>17</td>
</tr>
<tr>
<td>Ash content (%)</td>
<td>28</td>
<td>16.5</td>
</tr>
<tr>
<td>Percentage fixed carbon (%)</td>
<td>72</td>
<td>83.8</td>
</tr>
</tbody>
</table>

Table 1: Physical parameters of the activated carbon

3.1 Adsorption Studies

Methylene blue was chosen in this study because of its recognized usefulness in characterizing adsorptive material (Itoho et al., 2010). The size of methylene blue molecule is much larger and its adsorption is restricted mainly to the mesopores adsorbent. However a small portion is also found in larger micropores (Cleiton et al., 2011). The results of the methylene blue adsorption by the activated carbons are presented in Table 2 and 3. The results revealed that the quantity of the adsorbent has greater effect on the adsorption of methylene blue from aqueous solution. The result shows that the adsorption efficiency increased with increase in mass of the adsorbent. The increase in adsorbent mass increases the contact surface area of the adsorbent particles which means that it become more probable for solute molecules to be adsorbed on the adsorption sites and thereby increasing adsorption efficiency (Okeola et al., 2012).

3.2 Effect of Activating Agents

With all the adsorbent dosages, ZnCl₂ impregnated activated carbon sample has greater adsorption efficiency than the one prepared with H₃PO₄. This is due to the fact that samples with high percentage fixed carbon always have high adsorption capacities (Ogbonnaya, 1992). This result also suggests that ZnCl₂ impregnated activated carbon sample have well developed mesoporosity favorably for adsorption of larger molecules compared to H₃PO₄ impregnated activated carbon sample. However, the percentage adsorptions of methylene blue by these activated carbons are low, this may be due to the fact that the size of the methylene blue molecule is much larger and its adsorption is restricted mainly to the mesopores activated carbon (Cleiton et al., 2011).

<table>
<thead>
<tr>
<th>AC dosage (mg)</th>
<th>Post Adsorption Conc. of MB (mg/l)</th>
<th>Adsorption efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>201.67</td>
<td>19.33</td>
</tr>
<tr>
<td>200</td>
<td>197.54</td>
<td>20.98</td>
</tr>
<tr>
<td>300</td>
<td>180.64</td>
<td>27.74</td>
</tr>
<tr>
<td>400</td>
<td>167.36</td>
<td>33.05</td>
</tr>
<tr>
<td>500</td>
<td>140.58</td>
<td>43.77</td>
</tr>
</tbody>
</table>

Table 2: Adsorption of Methylene Blue by H₃PO₄ activated Carbon
Table 2: Adsorption of Methylene Blue by ZnCl$_2$ activated Carbon

<table>
<thead>
<tr>
<th>AC dosage (mg)</th>
<th>Post Adsorption Conc. of MB (mg/l)</th>
<th>Adsorption Efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>195.84</td>
<td>21.66</td>
</tr>
<tr>
<td>200</td>
<td>186.29</td>
<td>25.48</td>
</tr>
<tr>
<td>300</td>
<td>178.64</td>
<td>28.54</td>
</tr>
<tr>
<td>400</td>
<td>145.06</td>
<td>41.98</td>
</tr>
<tr>
<td>500</td>
<td>122.77</td>
<td>50.89</td>
</tr>
</tbody>
</table>

IV. CONCLUSION

Hura Crepitans L. seed shells were successfully converted into activated carbon using H$_3$PO$_4$ and ZnCl$_2$ as the activating agents. The results of the physical properties of the activated carbon compared favourably with the commercial activated carbon and with other activated carbons prepared from seed shells and cob. The adsorption of methylene blue by ZnCl$_2$ impregnated activated carbon was higher than H$_3$PO$_4$ impregnated activated carbon. However H$_3$PO$_4$ impregnated activated carbon is recommended for used in food and pharmaceutical industries since it is non toxic activating chemical as it does not contain heavy metal while ZnCl$_2$ impregnated activated carbon can be apply for the treatment of waste water from textile and allied industries.

REFERENCES