
The International Journal Of Engineering And Science (IJES)

|| Volume || 5 || Issue || 2 || Pages || PP -45-53 || 2016 ||

ISSN (e): 2319 – 1813 ISSN (p): 2319 – 1805

www.theijes.com The IJES Page 45

A Hardware-Aware Mean Filtering Algorithm

Abdullah Baz
Computer Engineering Department

College of computer and information systems

Umm Al-Qura University

aobaz01@uqu.edu.sa

--ABSTRACT--

The mean filter is a multipurpose spatial technique extensively used in image processing and pre-processing

applications. Its execution time strongly depends upon the image and kernel size. Therefore, inefficient

implementation of the mean filter wastes the time and energy of the computing hardware. According to the

literature, researchers in this field rely only on static analysis techniques (such as counting the number of

mathematical operations) to determine the performance of any algorithm or to compare the performance of

different algorithms. This article investigates the state of the art mean filtering techniques and proved

theoretically and experimentally that such analysis techniques are not accurate in measuring the performance of

any implementation. Interestingly, this paper proposes a new mean filtering implementation that outperforms the

optimum existing technique for large image sizes, although it does more number of mathematical operations.

Index Terms—Mean filtering, performance, algorithm, instruction.

--- ---------

Date of Submission: 15 February 2016 Date of Accepted: 05 March 2016

--- ---------------------

I. INTRODUCTION
Mean filtering filters the image by replacing the value of each pixel with the mean (average) value of its

neighbours that are located within a window (mask or kernel). Therefore, it can be directly used to smooth

images, reduce sharp transitions in grey levels, remove small details, and reduce noise & blurring. Moreover,

many other advanced image processing techniques such as image segmentation are built upon mean filter. Mean

filtering can be thought of as a convolution filter. Often a square kernel is used for mean filtering where small

kernel size is used for fine filtering and large kernel size is used for severe filtering [1-5].

The mean filter can be defined mathematically as follows without any loss of generality. Let the grey levels of

all pixels in a source image are stored in a 2𝐷 array called 𝐼 and the location of any pixel is determined by its

Cartesian coordinates 𝑥 & 𝑦, where the origin of the coordinate system is the topmost leftmost pixel of the

image [1-5]. Then, the grey level value of any pixel can be determined by 𝐼(𝑥, 𝑦) and the pixels values of the

image filtered by 𝑚 × 𝑛 window is:

(𝑥, 𝑦) =
1

𝑚 × 𝑛
∑ ∑ 𝐼(𝑗, 𝑘)

𝑦+
𝑛−1

2

𝑘=𝑦−
𝑛−1

2

𝑥+
𝑚−1

2

𝑗=𝑥−
𝑚−1

2

 (1)

, where 𝑚 and 𝑛 must be an odd number so that the window is centred at (𝑥, 𝑦). If the width and height of the

image 𝐼 is 𝑊 and 𝐻 pixels, respectively, then the simplest algorithm for implementing this filter is:

A Hardware-Aware Mean Filtering…

www.theijes.com The IJES Page 46

Algorithm 1: Basic algorithm

Input: Image 𝐼 of width 𝑊 pixels & height 𝐻 pixels, and the window size (𝑚

pixels in rows and 𝑛 pixels in columns)

Output: Filtered image 𝑂

𝐹𝑜𝑟 𝑥 𝑓𝑟𝑜𝑚 0 𝑡𝑜 𝑊 − 1
 𝐹𝑜𝑟 𝑦 𝑓𝑟𝑜𝑚 0 𝑡𝑜 𝐻 − 1

 𝑆𝑢𝑚 ← 0

 𝐹𝑜𝑟 𝑗 𝑓𝑟𝑜𝑚 𝑥 − (𝑚 − 1) 2⁄ 𝑡𝑜 𝑥 + (𝑚 − 1) 2⁄

 𝐹𝑜𝑟 𝑘 𝑓𝑟𝑜𝑚 𝑦 − (𝑛 − 1) 2⁄ 𝑡𝑜 𝑦 + (𝑛 − 1) 2⁄
 𝑆𝑢𝑚 ← 𝑆𝑢𝑚 + 𝐼(𝑗, 𝑘)

 𝐸𝑛𝑑

 𝐸𝑛𝑑

 𝑂(𝑥, 𝑦) ← 𝑆𝑢𝑚 (𝑚 × 𝑛)⁄
 𝐸𝑛𝑑

𝐸𝑛𝑑

The straightforward inspection of the above equation and algorithm shows that its execution time has a direct

relationship with the image size (𝑊 & 𝐻) and the filter size (𝑚 & 𝑛). Many researchers [6,7] in the field of DSP

algorithms rely only on the number of mathematical operation involved in an algorithm to measure its execution

time.

The main contribution of this paper is investigating the existing techniques of execution time estimation of

mean filtering algorithms. Based upon the results obtained from this investigation, this article exploits the

knowledge about the working mechanism of modern hardware to propose a new fast mean filtering algorithm.

The remainder of this paper is organized in six sections. Second section covers the state of the art mean

filtering algorithms and techniques. Third section explains the time cost of conditional instructions, which is

used in the optimum existing mean filtering algorithm. Fourth section figured out the bottleneck of the optimum

mean filtering algorithm. Then, we propose a new hardware-aware mean filtering algorithm in section five and

compare its performance with the optimum algorithm in section six. Finally, we summarize the article and states

our future work in section seven.

II. BACKGROUND
The authors of [6] noticed that the basic mean filtering algorithm repeatedly computes the sum of all

neighbourhoods of the index pixel every time it moves from one position to the next. This causes a major

redundancy because the filter only needs to add the last column of the new kernel and subtract the first column

of the previous kernel to the current sum as shown in Fig. 1. Considering this point in the implementation allows

the authors to decrease the number of mathematical additions and hence the computation time of the filter by at

least 50% when the kernel size is 5×5.

Fig. 1. A fast method of calculating the mean filter by adding the last column of the new kernel and subtracting

the first column of the old kernel to the current sum.

The authors of [7] went one step further by completely eliminating the division operation in addition to

further decreasing the number of addition operations involved in the filter. They called this method Zero

Division Method (ZDM) and they proved that its execution time is faster than all other existing techniques.

Many researchers [6-7] in this field measured the execution time of any algorithm based upon only static

parameters such as the number of involved mathematical operations (e.g. additions, divisions) or complexity

(e.g. computational, time). However, the execution time of any algorithm is the summation of the execution time

of each instruction. Therefore, it is not accurate to limit the execution time of the whole algorithm to some

instructions only and ignoring the rest. This can be considered as an approximation only if the execution time of

A Hardware-Aware Mean Filtering…

www.theijes.com The IJES Page 47

other instructions can be mathematically neglected with respect to the total execution time [8]. In order to judge

whether the execution time of an instruction can be ignored or not, we need to understand how the execution of

that instruction is conducted inside the hardware. This is a must because the execution techniques of some

instructions are more complicated than they look. Moreover, the execution time of some instructions is

completely dynamic and cannot be captured by any static analysis technique [8-10]. In order to demonstrate this

fact, we will investigate the ZDM algorithm to show that one of the ignored instruction (conditional statement)

take a significant amount of the total execution time, which cannot be ignored in any calculation. Firstly, we

start by explaining how modern processors execute conditional instructions.

III. COST OF CONDITIONAL INSTRUCTIONS
Modern computing units are multicores, which work based on pipeline principle. Thus, each instruction is

divided into several phases (e.g. fetch, decode, execute) and each phase is executed in a different pipeline stage.

This technique will keep all pipeline stages busy most of the time, which optimizes the computation

performance [8-10].

Conditional instructions force the computing unit to execute different instructions depending upon whether

predefined conditions evaluate to true or false. This causes a difficulty for the pipeline working mechanism [8-

9]. For instance, the pipeline stage that is responsible of fetching the instructions will not be able to fetch the

instruction next to the conditional instruction until the execution stage evaluates the condition. This will halt

some pipeline stages and decreases the overall performance of the computing unit. Pipelined processors

overcome this challenge via what is called branch predictor techniques, which attempt to predict whether the

condition is true or false. Based upon the prediction, the fetching stage will fetch the instruction that it thinks

(not sure) is the next one [9-10]. If the prediction was true, the processor will carry on its execution. However, if

the prediction was wrong, the pipeline will discard the partially executed instructions, then fetch, decode, and

execute the correct instructions. This situation is called Misprediction, which wastes the resources of the

processing unit. Despite that possible wastage, it was proven that branch predictor optimizes the overall

performance of multicore processing units [8-10]. The prediction accuracy strongly depends upon whether the

involved condition has a predictable pattern or not. Simple patterns (e.g. always TRUE, always FALSE, or

TRUE-FALSE-TRUE-FALSE...) is easy to predict by most existing branch prediction techniques. However,

complex pattern (e.g. TRUE-TRUE-TRUE-FALSE-FALSE-TRUE-TRUE-TRUE-FALSE-FALSE…) is

difficult to predict and the execution time of its conditional instruction could be several times slower than simple

pattern conditional instructions. Therefore, in order to accurately estimate or compare the execution time of any

algorithm that has a condition instruction, impact of branch Mispredictions must be taken into account.

IV. BOTTLENECK OF ZDM ALGORITHM
ZDM algorithm has only one condition instruction, which is crucial to ensure the circular nature of the array.

The involved condition compare a counter with the kernel size, therefore, this instruction strongly depends upon

the size of the utilized kernel. Table 1 lists the pattern for different kernel sizes (n), assuming square kernel.

TABLE I

THE CONDITION PATTERN OF THE CONDITIONAL INSTRUCTION IN ZDM ALGORITHM.

n Pattern Predictability

3 FFFT-FFFT…

5 FFFFFT-FFFFFT…

7 FFFFFFFT-FFFFFFFT…

9 FFFFFFFFFT-FFFFFFFFFT…

11 FFFFFFFFFFFT-FFFFFFFFFFFT…

13 FFFFFFFFFFFFFT-FFFFFFFFFFFFFT…

15 FFFFFFFFFFFFFFFT-FFFFFFFFFFFFFFFT…

The pattern of the condition is difficult to predict and its predictability increases as the kernel size increases.

This increases the overall execution time of the algorithm. In order to demonstrate this experimentally, we

conducted an experiment to investigate this issue in the algorithm. The aim of the experiment is to figure out

how much that condition instruction consumes from the total execution time. The experiment involves a

software implementation of ZDM algorithm in C# programming language. Then the implementation is used to

filter several images of different sizes utilizing different kernels. During the execution, we measured the

processing time of each instruction, which can be defined as how long the execution of each instruction has kept

the CPU busy. This performance metric does not only measure the time but also it gives an indication about how

much energy the CPU consumes in order to complete the execution of the instruction. Our experiment

A Hardware-Aware Mean Filtering…

www.theijes.com The IJES Page 48

guarantees that the measured time are not distorted by other processes running in the backend and the time spent

while execution is waiting (e.g. in a sleep mode) is not counted. We also count whether the execution utilizes

single or several cores of the processing unit.

The results of the experiments are depicted in Fig. 2, which plots the normalized execution time of only the

condition instruction with respect to the total execution time versus the kernel size.

Fig. 2. Normalized execution time of condition instruction in the ZDM algorithm.

The data demonstrates that the processor spends between 10% and 35% of total execution time only in

executing the condition instruction. This is mainly due to the unpredictable patterns involved in the condition of

this instruction. Interestingly, as the kernel size increases the normalized execution time of the instruction

decreases, which occurs due to the increasing in the predictability as explained in TABLE I. Despite this high

percentage of the total execution time, many researchers [6-7] ignored such instructions and do not count them

during the evaluation and comparison of algorithms.

Therefore, it is worth highlighting that in order to implement an efficient algorithm or to estimate its

execution time, we need to understand how the targeted hardware executes that algorithm.

V. A HARDWARE-AWARE MEAN FILTERING TECHNIQUE
The previous results guided us to implement the mean filter using a new hardware-aware algorithm via

exploiting the required knowledge about how modern processors function.

As mentioned earlier, repeating the sum operation of all neighbourhood pixels from scratch every time the

index pixel moves from one pixel to the next results in a major redundancy. This type of redundancy was

addressed in [6-7] for the case when the index pixel moves horizontally. However, the redundancy occurred

when the index pixel moves vertically and horizontally has not yet been addressed.

Here, we propose the following working mechanism to address this redundancy. After manipulating the

boundary rows and columns, we start from the topmost leftmost pixel in the source image and calculate the sum

of all neighbourhood pixels in the window. Then we repeat the following steps until the index pixel reaches the

bottommost row of the source image.

1. Move the index pixel one position towards the bottom of the image. Then subtract from the sum the

values of pixels in the topmost row of the old kernel and add to the sum the values of pixels in the

bottommost row of the new kernel. Finally, average the sum and assign its value to the middle pixel.

2. Move the index pixel one position towards the right of the image. Then subtract from the sum the values

of pixels in the leftmost row of the old kernel and add to the sum the values of pixels in the rightmost row

of the new kernel. Finally, average the sum and assign its value to the middle pixel. This step is repeated

until the index pixel reaches the rightmost pixel in the current row.

A Hardware-Aware Mean Filtering…

www.theijes.com The IJES Page 49

3. Move the index pixel one position towards the bottom of the image. Then subtract from the sum the

values of pixels in the topmost row of the old kernel and add to the sum the values of pixels in the

bottommost row of the new kernel. Finally, average the sum and assign its value to the middle pixel.

4. Move the index pixel one position towards the left of the image. Then subtract from the sum the values of

pixels in the rightmost row of the old kernel and add to the sum the values of pixels in the leftmost row of

the new kernel. Finally, average the sum and assign its value to the middle pixel. This step is repeated

until the index pixel reaches the leftmost pixel in the current row.

Starting from this working mechanism, we developed an algorithm that only utilizes low cost instructions

such as assignments, mathematical operations, and iteration instructions. This results in a hardware-aware

algorithm that is capable of addressing the mentioned redundancy as listed blow in algorithm 2.

Algorithm 2: Hardware-aware algorithm

Input: Image 𝐼 of width 𝑊 pixels & height 𝐻 pixels, and the size of the square window (𝑛 pixel)

Output: Filtered image O

𝑠𝑢𝑚 ← 𝑎𝑙𝑙 𝑝𝑖𝑥𝑒𝑙𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑘𝑒𝑟𝑛𝑒𝑙
𝑓𝑜𝑟 𝑦 𝑓𝑟𝑜𝑚 0 𝑡𝑜 𝐻 − 1

 𝑥 ← 0

 𝑠𝑢𝑚 ← 𝑠𝑢𝑚 − 𝑡𝑜𝑝𝑚𝑜𝑠𝑡 𝑟𝑜𝑤 𝑜𝑓 𝑡ℎ𝑒 𝑜𝑙𝑑 𝑘𝑒𝑟𝑛𝑒𝑙
 𝑠𝑢𝑚 ← 𝑠𝑢𝑚 + 𝑏𝑜𝑡𝑡𝑜𝑚𝑚𝑜𝑠𝑡 𝑟𝑜𝑤 𝑜𝑓 𝑡ℎ𝑒 𝑛𝑒𝑤 𝑘𝑒𝑟𝑛𝑒𝑙
 𝑂(𝑥 + (𝑛 − 1) 2⁄ , 𝑦 + (𝑛 − 1) 2⁄) = 𝑠𝑢𝑚 (𝑛 × 𝑛)⁄

 𝑓𝑜𝑟 𝑥 𝑓𝑟𝑜𝑚 1 𝑡𝑜 𝑊 − 1

 𝑠𝑢𝑚 ← 𝑠𝑢𝑚 − 𝑙𝑒𝑓𝑡𝑚𝑜𝑠𝑡 𝑐𝑜𝑙𝑢𝑚𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑜𝑙𝑑 𝑘𝑒𝑟𝑛𝑒𝑙
 𝑠𝑢𝑚 ← 𝑠𝑢𝑚 + 𝑟𝑖𝑔ℎ𝑡𝑚𝑜𝑠𝑡 𝑐𝑜𝑙𝑢𝑚𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑛𝑒𝑤 𝑘𝑒𝑟𝑛𝑒𝑙
 𝑂(𝑥 + (𝑛 − 1) 2⁄ , 𝑦 + (𝑛 − 1) 2⁄) = 𝑠𝑢𝑚 (𝑛 × 𝑛)⁄

 𝑒𝑛𝑑

 𝑦 ← 𝑦 + 1

 𝑠𝑢𝑚 ← 𝑠𝑢𝑚 − 𝑡𝑜𝑝𝑚𝑜𝑠𝑡 𝑟𝑜𝑤 𝑜𝑓 𝑡ℎ𝑒 𝑜𝑙𝑑 𝑘𝑒𝑟𝑛𝑒𝑙
 𝑠𝑢𝑚 ← 𝑠𝑢𝑚 + 𝑏𝑜𝑡𝑡𝑜𝑚𝑚𝑜𝑠𝑡 𝑟𝑜𝑤 𝑜𝑓 𝑡ℎ𝑒 𝑛𝑒𝑤 𝑘𝑒𝑟𝑛𝑒𝑙
 𝑂(𝑥 + (𝑛 − 1) 2⁄ , 𝑦 + (𝑛 − 1) 2⁄) = 𝑠𝑢𝑚 (𝑛 × 𝑛)⁄

 𝑓𝑜𝑟 𝑥 𝑓𝑟𝑜𝑚 𝑤 − 1 𝑡𝑜 1

 𝑠𝑢𝑚 ← 𝑠𝑢𝑚 − 𝑟𝑖𝑔ℎ𝑡𝑚𝑜𝑠𝑡 𝑐𝑜𝑙𝑢𝑚𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑜𝑙𝑑 𝑘𝑒𝑟𝑛𝑒𝑙
 𝑠𝑢𝑚 ← 𝑠𝑢𝑚 + 𝑙𝑒𝑓𝑡𝑚𝑜𝑠𝑡 𝑐𝑜𝑙𝑢𝑚𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑛𝑒𝑤 𝑘𝑒𝑟𝑛𝑒𝑙
 𝑂(𝑥 + (𝑛 − 1) 2⁄ , 𝑦 + (𝑛 − 1) 2⁄) = 𝑠𝑢𝑚 (𝑛 × 𝑛)⁄

 𝑒𝑛𝑑

𝑒𝑛𝑑

We implemented the above algorithm in C# programming language and tested it using sample images. Fig. 3

and 4 shows some outputs of the implemented algorithm.

(a)

A Hardware-Aware Mean Filtering…

www.theijes.com The IJES Page 50

(b)

(c)

Fig. 3. (a) A test sample obtained from [11] used to test our algorithm, (b) the output for 5×5 mean filter, and

(c) the output for 11×11 mean filter.

(a)

A Hardware-Aware Mean Filtering…

www.theijes.com The IJES Page 51

(b)

(c)

Fig. 4. (a) A test sample obtained from [12] used to test our algorithm, (b) the output for 3×3 mean filter, and

(c) the output for 7×7 mean filter.

VI. COMPARATIVE EVALUATION
In order to demonstrate the difference between hardware-aware and unaware algorithms, this section

compares the execution time of our proposed algorithm and ZDM algorithm. Both algorithms were implemented

in C# programming language and then all implementations are compiled and run on the same machine under the

same operating conditions using the same testing samples. The samples are images of different sizes, which

include 128×128, 256×256, 512×512, 640×480, 800×600, 1024×768, 1280×800, 1792×1312, 2304×1728 &

2048×2048, where each image is filtered using different kernels including 3×3, 5×5, 7×7, 9×9, 11×11, 13×13

& 15×15. The execution time for each algorithm is calculated by averaging the execution time of 5000 runs.

The results of this experiment are shown in Fig. 5, which plots the normalized execution time versus the image

size for different kernel sizes. The normalized execution time is the execution time of the ZDM algorithm

divided by the execution time of our proposed algorithm. Consequently, values above 1 mean that our algorithm

is faster than ZDM and values below 1 mean that ZDM is faster than our algorithm.

Based on the plotted data, our algorithm is 25% slower than ZDM for small image sizes. However, as the

image dimension increases beyond 1000 pixels the execution time of the ZDM starts to increase due to the

effect of condition instruction. As an upper limit, the execution time of ZDM is more than twice (205%) the

execution time of our algorithm. The effects of the kernel size on the performance, which was described earlier

in Table I, appears in plot since the performance of ZDM gets worse as the kernel size decreases.

Furthermore, our experiment involved counting the number of additions in both algorithms. Some of the data

is listed in Table II below. Interestingly, the number of addition operations involved in our proposed algorithm

is more than that in ZDM algorithm. Our algorithm has between 16% and 75% more addition operations than

ZDM for all image and kernel sizes mentioned above. This supports the theory mentioned above: the number of

mathematical operations is not an accurate tool to judge the algorithm performance.

A Hardware-Aware Mean Filtering…

www.theijes.com The IJES Page 52

Fig. 5. Normalized execution time of ZDM with respect to our algorithm for different image and kernel sizes.

TABLE II

THE NUMBER OF ADDITIONS INVOLVED IN ZDM AND OUR PROPOSED ALGORITHM.

Image

width

(pixel)

Image

height

(pixel)

Kernel

size

(pixel)

Number of

additions in

ZDM

Number of

additions in our

algorithm

Normalized number

of additions

(Our/ZDM)

128 128 3 81920 95256 1.16

128 128 15 278528 389880 1.39

256 256 3 327680 387096 1.18

256 256 15 1114112 1756920 1.57

512 512 3 1310720 1560600 1.19

512 512 15 4456448 7440120 1.66

640 480 3 1536000 1829784 1.19

640 480 15 5222400 8751480 1.67

800 600 3 2400000 2863224 1.19

800 600 15 8160000 13817880 1.69

1024 768 3 3932160 4697112 1.19

1024 768 15 13369344 22846200 1.70

1280 800 3 5120000 6119064 1.19

1280 800 15 17408000 29852280 1.71

1792 1312 3 11755520 14069400 1.19

1792 1312 15 39968768 69235320 1.73

2304 1728 3 19906560 23839512 1.19

2304 1728 15 67682304 117751800 1.73

2048 2048 3 20971520 25116696 1.19

2048 2048 15 71303168 124114680 1.74

VII. CONCLUSION AND FUTURE WORK
Due to the importance of the mean filter for most image processing and pre-processing applications, this

paper investigated the existing mean filtering algorithms. According to the literature, the optimum one is called

Zero Division Method (ZDM). The researchers in this field rely only on the number of mathematical operations

involved in any algorithm to measure its performance and to compare it with others. However, we proved

(theoretically and experimentally) in this paper that this is an inaccurate method. Furthermore, we figured out

A Hardware-Aware Mean Filtering…

www.theijes.com The IJES Page 53

the main bottleneck of the ZDM algorithm and we conducted an experiment to support our argument. According

to the obtained results, we proposed a new hardware-aware algorithm that has more mathematical operations

than ZDM, however, its execution time is half that of ZDM for some image and kernel sizes.

Therefore, we conclude that proposing an efficient algorithm requires a good knowledge about how real

hardware function, which is needed to avoid instructions that wastes processors resources. The work proposed in

this paper opened a new research dimension for optimizing the performance of existing DSP algorithms via

exploiting the required knowledge about how the targeted hardware functions. Our future work will concentrate

in investigating other important processing techniques to improve their performance.

REFERENCES
[1] R. Gonzalez, R. Woods, S. Eddins, Digital Image Processing Using MATLAB, Pearson Education, 2004.

[2] R. Gonzalez, R. Woods, Digital Image Processing, second ed., Pearson Education, 2002.
[3] W Pratt, Digital Image Processing, third ed.,Wiley, NewYork, 2001.

[4] A. Jain, Fundamentals of Digital Image Processing, Prentice-Hall, 1989.

[5] A. Rosenfeld, A. Kak, Digital Picture Processing, Academic Press, New York, 1982.
[6] J. PAN, Y. TANG, B. PAN, the Algorithm of Fast Mean Filtering, the 2007 International Conference on Wavelet Analysis and

Pattern Recognition, Beijing, China, 2-4 Nov. 2007.

[7] S. Rakshit, A. Ghosh, B. Uma Shankar, Fast mean filtering technique (FMFT), Pattern Recognition 40 (2007) 890 – 897.
[8] X. Wu, Performance Evaluation, Prediction and Visualization of Parallel Systems, Springer Science & Business Media.

[9] P. Chang, E. Hao, T. Yeh, Y. Patt, Branch Classification: a New Mechanism for Improving Branch Predictor Performance, the

27th Annual International Symposium on Microarchitecture, 1994.
[10] D. Parikh, K. Skadron, Y. Zhang, M. Stan, Power-aware branch prediction: characterization and design, IEEE Transactions on

Computers, Vol.53, (2), pp.168-186.

[11] [Online]. Available:http://www.medialab.ntua.gr/research/LPRdatabase.html
[12] [Online]. Available:http://sipi.usc.edu/database/

