
The International Journal Of Engineering And Science (IJES)

|| Volume || 4 || Issue || 2 || Pages || PP.90-115|| 2015 ||

ISSN (e): 2319 – 1813 ISSN (p): 2319 – 1805

www.theijes.com The IJES Page 90

Contextualized Software Configuration Management Model For

Small And Medium Software Development Firms

Davis Nyakemwa Onsomu
Faculty of Information Science and Technology, Kisii University

--ABSTRACT--
Most of the small and medium software development firms do not appreciate and embrace existing software configuration management

models due to the bureaucratic nature of the models’ design and perceived bias portrayal towards large firms. Software configuration

management is a key component in the general software engineering process that leads to the realization of quality produced software and

software products. There is need to address this particular gap by proposing contextualized software configuration management model for

small and medium software development firms. This is so especially in developing countries that operate in different policy, regulatory,

industry and organizational contexts from the firms in developed countries. Specific objectives of the study included: to establish the

approach employed by small and medium software firms in relation to software configuration management; evaluate the effectiveness of the

existing software configuration management model employed in small and medium software firms; assess the challenges faced by small and

medium software firms in software configuration management practice; propose contextualized SCM model that is relevant and beneficial to

small and medium software firms in Kenya and other developing countries and evaluate the effectiveness of the proposed contextualized

SCM Model in small and medium software development firms. The model developed drew certain elements of each of the four traditional

software configuration management models to come up with an enhanced and improved model. The proposed model capitalized on

addressing the weaknesses inherent in the existing models by proposing process modelling approach that includes context into process

descriptions, enabling process owners to design processes for change and switch such processes during execution. In construction, the

proposed model adopted the ideologies of definition of context and design for change. The study sample was selected from the population of

small and medium software development firms within Nairobi city. The study used survey research and naturalistic observation to collect

data. Data collected was coded, analyzed using the Statistical Package for Social Sciences, Microsoft Excel and presented in the form of

tables of frequencies, percentages, means, standard deviations and graphs. Findings revealed that most of the firms studied employed

traditional models whereas minority did not practice any model. In addition, majority of firms studied did not practice conventional and

standard phases of software configuration management across all software projects undertaken. The study identified numerous challenges

regarding software configuration management practice in small and medium software development firms such as bureaucracy, time

intensiveness, and cost intensiveness of the process among others. This study established indication that no specific contextualized software

configuration management model was in existence to address the needs of small and medium software development firms in developing

countries including Kenya. Findings indicate that the proposed model was highly approved and recommended by the respondents, since the

model captured the aspirations and needs of the small and medium software firms. The study recommends further development of the

proposed model into a software tool to be commercialized.

Keywords: contextualization, functionality requirements, solid process, context definition, process abstraction, process sequence

--- ----------

Date of Submission: 22 August 2014 Date of Accepted: 06 March.2015

I. INTRODUCTION

Studies indicate that various software configuration management (SCM) models have been designed in developed countries such as China,

United States of America, Brazil and Denmark. The models have been developed using different architectures and include component-based
software development, POEM, Odyssey-VCS and Ragnarok architectural model. Component-based software development model was

designed to support software development process together with traditional software configuration management in order to solve issues

related to logical software constituents and relationships. In the United States of America, POEM software configuration management model
stores large software artifacts such as source code, object code and documents as files in the underlying file system without allowing users to

directly access files and directories of the underlying file system (Mei, Zhang & Yang, 2002; Lin & Reiss, 1995; Murta et al, 2007;

Christensen, 1999).

The Brazilian’s Odyssey-VCS design, is the integrated software configuration management model for unified modelling language. This

model composes of version control system and two complementary components of customizable change control system and traceability link
detection tool that uses data mining to discover change traces among versioned unified modelling language (UML) model elements, and

provides the rationale of change traces, automatically collected from the integrated SCM infrastructure. This model is focused towards

software configuration management on software developed using fine-grained UML model elements (Murta et al, 2007).

In Denmark, Ragnarok architectural model allows tight version control and configuration management of the architecture of the software

system. The model takes the logical software architecture as the starting point and uses this structure to drive the version-and-configuration
control process. Ragnarok places strong emphasis on reproducibility of configurations and architectural changes. In addition, this model

emphasizes the application to the handling of software with evolving architecture tendency (Christensen, 1999).

Findings reveal that most of the software configuration management models in existence in the world today, evolved completely

independent of each other based on the needs of the unique platforms design, and perceived ways in which the software was developed in
respective environments. Many companies created home-grown SCM models to meet own specific needs while software vendors responded

with plethora of designs with bias towards single platform or context (Cravino et al, 2009).In some developing countries including Kenya,

different studies show that there is lack of software configuration management model that specifically addresses the needs of small software
development firms (Pino, Garcia & Piattni, 2009; Mohan et al, 2008; Er & Erbas, 2010; Kogel, 2008). Small and medium software

Contextualized Software Configuration…

www.theijes.com The IJES Page 91

development firms in developing countries operate in different policy, regulatory, industry and organizational contexts. Additionally, the

applicability of the models designed for developed countries is not always relevant to small and medium software firms in developing
countries. There is lack of software configuration management model that looks at the SCM practice from process-centered functionality

area view of configuration management functionality requirements with the aim of providing contextualized approach for the firms in

addressing pertinent issues, problems and weaknesses inherent in existing models and even systems (Humble & Farley, 2010;
Balamuralidhar & Prasad, 2011; Ochuodho & Brown, 1991; Hong et al, 2002; Rosenblum & Krishnamurthy, 1991).

There are four traditional standard SCM models in existence from which SCM models are accepted and applied in business organizations
(Feiler, 2010; Sovran et al, 2011; Dix & Gongora, 2011; Rodriguez et al, 2011; Rubin et al, 2008; Zhu et al, 2011; Kaur & Singh, 2011).

These include the check-out/check-in, composition, long transaction and change set. The classification is based on certain patterns observed

in support of the repository which is the centralized library that consists of objects under configuration management control. Most SCM
systems are essentially based on any one of these models. Despite this, this study has identified paramount weaknesses in these four models

and hence shall capitalize on the same to yield contextualized software configuration management model that is specific to the needs of

small and medium software development firms in developing countries.

1.1 Statement of the Problem

Small and medium software development companies form large population out of the total number of software companies in the world.
Start-up companies play significant role in the booming software economy, although literature discussing the issues of small and medium

software development firms in terms of software configuration management process or methods is virtually non-existent. One of the greatest

difficulties in applying software configuration management in small companies is the unawareness of the importance of that activity and,
sometimes, the idea that the task is bureaucratic service that only produces delays. There is evidence that majority of small and medium

software firms are not adopting existing standards, perceiving the standards as being oriented towards large organizations. Existing

standards and models are more complex for small enterprises to comprehend owing to inadequate availability of skills and resources. Studies
show that small and medium firms’ negative perceptions of process model standards are primarily driven by negative views of cost,

documentation and bureaucracy (Pino, Garcia & Piattni, 2009; Mohan et al, 2008; Er & Erbas, 2010; Kogel, 2008). Different studies

indicate lack of software configuration management model that specifically addresses the needs of small and medium software development
firms especially in developing countries (Pino, Garcia & Piattni, 2009; Mohan et al, 2008; Er & Erbas, 2010; Kogel, 2008).

Small and medium software development firms in developing countries operate in different business environment that is not always
conducive for the applicability of the models designed for developed countries. Similarly, studies indicate that there is lack of software

configuration management model that looks at the practice from process-centered functionality view, which is integral part of configuration

management functionality requirements, in relation to providing contextualized approach for small and medium software development firms
in addressing pertinent issues, problems and weaknesses inherent in existing models and even systems (Humble & Farley, 2010;

Balamuralidhar & Prasad, 2011; Ochuodho & Brown, 1991; Hong et al, 2002 & Rosenblum & Krishnamurthy,1991).

Access to and cost of finance is often ranked as one of the most constraining features of the business environment by SMEs. Recent research
also shows the importance of the business environment for firms’ financial constraints and patterns. Beck (2007) shows that institutional

development, measured very broadly, is the most robust country-characteristic predicting cross-country variation in firms’ financing
obstacles, even after controlling for cross-country differences in GDP per capita. Firms in countries with higher levels of institutional

development report significantly lower financing obstacles than firms in countries with less developed institutions (Beck, 2007).

1.2 Purpose of the Study

The main objective of this study was to propose software configuration management model that is suited to the needs and aspirations of

small and medium software development firms in Kenya and other developing countries.

1.3 Objectives of the Study

The specific objectives of the study included to:

i. Establish the approach employed by small and medium software firms in relation to SCM.

ii. Evaluate the effectiveness of the existing SCM model employed in small and medium software firms.

iii. Assess the challenges faced by small and medium software firms regarding SCM practice.

iv. Propose contextualized SCM model that is relevant and beneficial to small and medium software firms in Kenya and other

developing countries.

v. Evaluate the effectiveness of the proposed contextualized SCM model in small and medium software firms.

1.4 Research Questions of the Study
i. What approaches are employed by small and medium software development firms in relation to SCM practice?

ii. What is the effectiveness of the existing SCM model employed in small and medium software firms?

iii. What are the challenges faced by small and medium software firms regarding SCM practice?

iv. To what extent is the proposed SCM model relevant and beneficial to small and medium software firms in Kenya and other

developing countries?

v. To what extent is the proposed SCM model effective to small and medium software firms?

1.5 Assumptions of the Study

This study was based on the following assumptions:

i. Small and medium software development firms in Nairobi, Kenya practice software configuration management in the firms’ day
to day operations.

ii. Small and medium software development firms in Nairobi, Kenya have the capacity and willingness to perform software

configuration management at the level suggested by this proposed SCM model.

Contextualized Software Configuration…

www.theijes.com The IJES Page 92

1.6 Scope of the Study

The study focused on small and medium software development firms in the city of Nairobi, Kenya. In addition, the study focused on the
software configuration management aspect of the software engineering process. This involved change management in the software

engineering industry with a view of proposing a model tailored for the needs of small and medium software development firms in Kenyan

context. Small and medium enterprises include business enterprises with number of workers not exceeding 50.

1.7 Limitations of the Study

This study envisioned the following limitation:

i. The study aimed at developing software configuration management model, however the practical development of the proposed

solution is left to interested persons who would wish to carry on with the study.

II. LITERATURE SURVEY
2.1 SCM Models for Small and Medium Software Firms

Software process improvement is an important mechanism to boost competitiveness and efficiency in software companies. Models such as

capability maturity model (CMM) and others support development organizations and contribute to the attainment of firms’ quality goals
when used as guides for software process improvement. Implementing process improvements based on models, however implies long-term

and large investment projects. This is particularly critical in small and mid-sized enterprises (SMEs) which usually have the largest financial

constraints. Implementation of effective software configuration management strategy is critical for increasing the probability of success not

only in the level of individual projects but also in the level of the organization carrying out many interrelated projects. As a result of its

impact on the economics of shared component development and usage, SCM strategy should be in alignment with the underlying

governance structure so as to demonstrate effectiveness in minimizing costs of managing organizational software assets (Boas et al, 2010 &
Boden et al, 2011).

Four main software configuration management models can be identified in the literature (Sovran et al, 2011; Dix & Gongora, 2011;
Rodriguez et al, 2011; Rubin et al, 2008; Zhu et al, 2011; Kaur & Singh, 2011). These are check-out/check-in, composition, long transaction

and change set. The classification is based on certain patterns observed in support of the repository in the centralized library. Present

software configuration management models are still essentially based on any one of these models.

2.1.1 Check-Out/Check-In Model

The central concept is the repository, where all the individual files and all of the files’ versions are stored. Usually, the files in the repository

cannot be operated directly by developer tools but explicit operations are needed to store the file into the repository (check in) and retrieve
the file back to the desired directory (check out). When the file is checked- in, usually after some modifications, new version of that file is

created. When checking the file out of the repository the desired version has to be denoted. The files are checked-out for reading or writing

allowing concurrency control actions to avoid undesired concurrent changes to the same version of the file. When the file is checked out for
writing, locking mechanism can guarantee that no other person modifies the same version of the file until it is checked back in to the

repository (Sovran et al, 2011; Dix & Gongora, 2011; Rodriguez et al, 2011; Rubin et al, 2008; Zhu et al, 2011; Kaur & Singh, 2011).

Sequential versions of the file are called revisions. All new versions of the file are not necessarily revisions but also parallel development

paths called branches may exist. Branches are necessary when maintaining released version of the system and developing new ones

concurrently, where some files include platform specific parts or two developers are forced to make concurrent changes to the same file.

Two branches always have common ancestor, and at some point of time the changes to these branches may be merged, resulting to new
version in one of the branches and possible termination. The whole version history of the file may be presented as version graph (Sovran et

al, 2011; Dix & Gongora, 2011; Rodriguez et al, 2011; Rubin et al, 2008; Zhu et al, 2011; Kaur & Singh, 2011).

2.1.2 Composition Model

Check-out/check-in model deals with individual files, while composition model focuses on supporting configurations. In this context,

configuration consists of the system model. This lists all the components that make up the system and version selection rules that are applied
to the system model in order to choose the desired version of each component. Selection rules may specify either revision or variant of the

file, and thus, support management of system variants. The version history of configurations is stored by versioning the system model and

selection rules. In bound configurations, the rules uniquely specify the version of each of the configuration components. These
configurations may be given version numbers, which may be used to refer to them later. In a situation whereby the application of selection

rules results in different versions of components at different times, for example, the latest versions of the components, the configuration is
called partially bound or configuration template. Developers may apply configuration template to create configuration in the developers’

working area, which stays stable until the developers explicitly update the working area by applying the template again (Sovran et al, 2011;

Dix & Gongora, 2011; Rodriguez et al, 2011; Rubin et al, 2008; Zhu et al, 2011; Kaur & Singh, 2011).

2.1.3 Long Transaction Model

The long transaction model focuses on supporting the evolution of the whole system as series of apparently atomic changes, and provides

team support through coordination of concurrent change. Developers operate primarily with versioned configurations. Contrarily to the

composition model, developers first select the version of the system configuration, and then focus on the system structure. The selected

system configuration determines the versions of the components used. In the event of making the change, transaction is started. The change
is made in the workspace, which represents the working context and provides local data storage visible only within the scope of the

workspace. The working space may be mapped into the file system allowing transparent access to the repository for the development tools.

Workspace consists of the working configuration that are frozen states of previous working configurations. Working space originates from
bound configuration in the repository or preserved configuration of enclosing workspace. When the changes are finished, the transaction is

committed, which effectively creates new version of the configuration in the repository or enclosing workspace and make the changes

visible outside the workspace. Finally, the workspace may be deleted or used for further changes. If the workspace originates from another
workspace, the result is hierarchy of workspaces. The different levels in the hierarchy represent different levels of visibility (Sovran et al,

2011; Dix & Gongora, 2011; Rodriguez et al, 2011; Rubin et al, 2008; Zhu et al, 2011; Kaur & Singh, 2011).The bottom workspaces belong

to the individual developers, one level up is the workspace for the team and the next level may be visible to the testing team and so on until
the hierarchy ends to the repository. Three categories of concurrent development are supported such as concurrency within one workspace,

concurrency between workspaces requiring coordination and concurrent independent development. In the first case, concurrent changes are

restrained by allowing only one person at a time to change the file.

Contextualized Software Configuration…

www.theijes.com The IJES Page 93

The control may happen at different levels including limiting access to the workspace to one person; allowing only one person at a time to

be active in the workspace; or locking individual components for exclusive use of one person at a time (Sovran et al, 2011; Dix & Gongora,
2011; Rodriguez et al, 2011; Rubin et al, 2008; Zhu et al, 2011; Kaur & Singh, 2011).

In the second case, changes in separate workspaces together evolve the system. Schemes for controlling this concurrency may be

conservative or optimistic. Conservative schemes require a priori across workspaces. In optimistic schemes conflicts are detected when
changes are committed. The third case assumes that the system evolves independent development paths and changes need not be coordinated

when created (Sovran et al, 2011; Dix & Gongora, 2011; Rodriguez et al, 2011; Rubin et al, 2008; Zhu et al, 2011; Kaur & Singh, 2011).

2.1.4 Change Set Model

The main concept in the change set model is the change set, which represents the set of modifications to different components making up the

logical change. Typical case is that implementing requested change to software requires modifications to several components. Change sets

involve several operations. Developers can work with groups of components belonging to the same logical change instead of dealing with
each component separately. Change requests, which are descriptions of the change to be made, may be easily linked to the actual changes

made to the components. Queries on the dependencies between logical changes, changed components and versions of configurations can be

made. These queries include determining which component has been modified as part of logical change; determining the collection of
change sets particular component is part of; determining which change sets are included in the particular configuration as well as

determining which configurations include the specific change (Sovran et al, 2011; Dix & Gongora, 2011; Rodriguez et al, 2011; Rubin et al,

2008; Zhu et al, 2011; Kaur & Singh, 2011).
Configurations in this model consist of baseline and several change sets applied on the same. Different configurations can be made by

applying different collections of change sets to the baseline. To the contrary, all combinations of change sets are not necessarily consistent.

Some of the change sets may be dependent on others while some may be in conflict with others. Some method for determining the physical
and logical dependencies between changes has to be used. The change set model does not provide concurrency control. As a result,

configuration management systems using the change set model complements with the check-out/check-in model (Sovran et al, 2011; Dix &

Gongora, 2011; Rodriguez et al, 2011; Rubin et al, 2008; Zhu et al, 2011; Kaur & Singh, 2011).

2.2 Research Gaps in Existing SCM Models

Existing models have numerous challenges or research gaps as noted by various authors grouped as process functionality, auditing
functionality, accounting functionality and controlling functionality.

2.2.1 Process Functionality

Process functionality involves a number of aspects such as clear definition of processes, support and indiscipline indistinction, invalidated

effectiveness of life cycle support, unclear task management process, informational indecisions in tool use and invalidation of automated

workflow systems. In the aspect of clear definition of processes, although every SCM system comes with built-in process in the small
(check-out/ check-in cycle and long transactions), the degree to which large scale processes are supported varies. Professional experience

advises that the big leap forward is the clear definition of software processes. Use of tools is beneficial only if the tools are really supportive

although such tools take the role of bureaucrats increasing the number of required interactions for the developers. SCM systems that are too
rigid in enforcing the process are cursed by developers and reduce effectiveness (Fruhauf & Zeller, 1999; Loumos et al, 2010; Aiello &

Sachs, 2010; Berzisa & Grabis, 2011).Resource implications – particularly that of management time – mean that the implementation process
is markedly more taxing for small and medium enterprises than large companies. Consequently, well-designed development process, with

clear focus and effective process management improves efficiency and the likelihood of success, (Hudson et al, 2001). In relation to support

and discipline indistinction, the distinction between support (use of tools) and discipline (use of standard) remains to be validated in existing
SCM models (Schmidt, 2012).The SCM automated tools used for the project and described in the software configuration management plan

need to be compatible with the software engineering environment development or maintenance occurs. SCM tools offer wide range of

capabilities, and the most useful tool set for supporting the engineering and management environment has to be chosen from among other
available tool sets (IEEE Standard for SCM Plans, 1990). In the context of quality, SMEs are finding it hard to distinguish between use of

tools and use of standards as the requirement for marketing rather than for quality reasons. As a result SMEs in particular are not benefiting

sufficiently from the quality industry, and thus, affecting the quality of products and services, confusing the system and displaying alarming
lack of appreciation (Jones et al, 2010; Schmidt, 2012; European Telecommunications Standards Institute, 2011).

In invalidated effectiveness of life cycle support, one failure of existing SCM models is that the effectiveness of life cycle support has not

been validated. The distinction between support and discipline, and thus, the effectiveness of life cycle support remains to be validated
(Fruhauf & Zeller, 1999; Chen et al, 2011; Weinreich & Buchgeher, 2012; Crowston et al, 2012). Software SMEs view life-cycle support as

being infeasible (overly time-consuming or costly to implement) rather than non-beneficial. Unlike the high-process focus in life cycle

support, SMEs often adopt low process focus electing only to implement process improvements in response to negative business events
(Clarke et al, 2010; Baddoo & Hall, 2010; Clarke et al, 2011).

In the aspect of unclear task management process, rather than enforcing activities, more advanced SCM systems offer means to track current

and pending processes. Task management is the area overlapping with (project) management. If tools are used then there is need to carefully

decide the type of information to be kept in the SCM model and the project management tool. Tight coupling of work activities with the

state control of the work results leads to sluggish SCM systems (Fruhauf & Zeller, 1999; Klosterboer, 2010; Sarma & Hoek, 2008);

therefore, in the existing models, task management is not clear. Considering evidence of important software process improvement occurring
to the system life cycle, SMEs find it difficult to distinguish between task management and project management. This can be the case where

there is SCM-specific process that has corresponding parent project level process, for example, the configuration identification and the

software configuration identification process. There is strong overlap between task management and project management processes (Clarke
et al, 2010; Baddoo & Hall, 2010; Clarke et al, 2011).

Regarding informational indecisions in tool use, task management is the area overlapping with (project) management. If tools are used, then

there is need to carefully decide the type of information to be kept in the SCM model and project management tool. Failure of existing SCM
models involves where the SCM tools used, is not carefully decided which type of information is kept in the model and project management

tool (Fruhauf & Zeller, 1999; Heer et al, 2010; Dabbish et al,2010). Most SMEs share characteristics that distinguish them from large

enterprises. In contradiction, such characteristics may also impose restrictions on such firms’ economic, human and technological aspects
such as technology adoption (Rivas et al, 2010). In invalidation of automated workflow systems, ultimate process support is achieved with

automated workflow systems. To the contrary, such systems are not yet validated raising queries on how such systems handle workflow

automatically. In practice, work flow is typically organized by informal communication. Most SCM systems support triggers that are
associated with specific events like automatic notification by e-mail whenever change occurred. These communication features are well-

understood, cheap and effective means for simple work flow support (Wang et al, 2012; Elmroth et al, 2010; Fruhauf & Zeller, 1999).

Contextualized Software Configuration…

www.theijes.com The IJES Page 94

One weakness or failure of existing SCM models is that automated workflow systems that achieve ultimate process support need to be

validated. Workflow system that achieves process support in software SMEs is evidently deficient giving room for non-validation of
processes within business operations that may hamper process improvement initiatives (Yahaya et al, 2012 & Ozcelik, 2010).

2.2.2 Auditing Functionality

Auditing functionality involves the aspect of traceability of related documents that is lacking in existing SCM models. Queries are raised on

how changes during implementation can be traced back to the design phase and the requirements phase. Further queries have been raised

regarding the relationship between changes in implementation and in documentation. Every SCM system provides mature and widely used
features to inquire about the change history of specific configuration items. In contrast, the unsolved problem is the traceability of related

documents although change-based versioning or activity-based SCM (Micallef & Clemm, 1996), allows these changes to be associated with

each other. There is still room for improvement in this particular aspect (Anquetil et al, 2010; Mader et al, 2012; Fruhauf & Zeller,
1999).Software configuration status accounting is the record keeping and reporting activity performed by the configuration librarian to

maintain the traceability of changes and product versions. This may not be applicable in majority of software SMEs since such firms tend to

view the procedure as overly bureaucratic and time-consuming (Habra et al, 2011).

2.2.3 Accounting Functionality

Accounting functionality involves the aspect of deficiencies in tagging. Accounting facilities let users (and managers) inquire about the

status of the product. SCM systems at least allow classifying components and versions according to specific properties (experimental,
proposed or stable). Consequently, existing SCM models are facing pending problems in the simple tagging method used to facilitate the

classification of components and versions according to specific properties (experimental, proposal or stable) (Fruhauf & Zeller, 1999;

Treude & Storey, 2009; Kim & Youn, 2010).Software SMEs disregard the techniques and procedures that guarantee proper tagging used to
facilitate classification of versions and components during software status accounting of the SCM. This results in misclassification of

versions that undermines version and component traceability (Habra et al, 2011; Ozcelik, 2010; Yahaya et al, 2012).

2.2.4 Controlling Functionality

Controlling functionality involves the aspect of failed control processes. Tracking of change requests and defect reports is at the heart of the

maintenance process, starting as soon as independent testing begins. The process of handling these, especially responsibility for decisions
and definitions of records to be kept, determines the responsiveness of the organization on user needs. In small organizations, simple Excel

sheet provides enough support, however, bigger organizations require elaborated database with dedicated queries, failure in existing SCM

models. Tracking of product defects is significant SCM topic that provides immediate insight on the current product quality. Bug-tracking
tools frequently come as standalone tools, from the freely available GNATS system to elaborated commercial systems. On the contrary, the

integration with SCM repositories as well as automated testing facilities still leaves a lot to be desired, raising challenges for SCM vendors

and researchers (Rupareila, 2010; Chen & Chen, 2009; Fruhauf & Zeller, 1999).Software SMEs are evidently noted for casually handling
the issue of change request tracking and this undermines the quality of the final software product considerably (Rivas et al, 2010; Mader &

Gotel, 2012; Loumos et al, 2010).

2.2.5 Other Research Gaps in Existing SCM Models

Other challenges or research gaps identified in SCM Models are explained as follows: In the aspect of mismanagement of change requests,

advanced SCM systems (Whitgift, 2001) offer elaborated management of change requests. The effectiveness of the process remains to be

validated, although improvements are more likely to come from SCM vendors than from SCM researchers (Hadden, 1998 & Fruhauf &
Zeller, 1999). The effectiveness of the elaborated management of change requests whereby the whole development process is organized

along the processing of change requests as depicted in the LIFESPAN SCM system/ model needs to be validated. Software SMEs are

evidently noted for casually handling the issue of change request tracking and this undermines the quality of the final software product
considerably (Rivas et al, 2010; Mader & Gotel, 2012; Loumos et al, 2010).

Disintegration of interfacing processes is where advanced SCM models like LIFESPAN offer elaborated management of change requests

where the whole development process is organized along the processing of change requests. The effectiveness of the process remains to be
validated by existing SCM models. Tracking of product defects provides immediate insight on the current product quality, however, the

integration with SCM repositories as well as automated testing facilities still leaves a lot to be desired which is failure on the part of existing

SCM models (Biffl & Schatten, 2009; Fruhauf & Zeller,1999; Bose et al, 2008).

Integration of product defects tracking, SCM repositories and testing facilities is an area of concern in software SMEs that hampers

collaborative software development when in absence, more so in distributed environment like that of small scale offshore software
development projects (Boden et al, 2008; Katchow et al, 2011; Duhan et al, 2012).Existing SCM models have not been integrated with the

organization’s business process (especially the software development process) and this is the failure on the part of the existing SCM models

(Aiello & Sachs, 2010 & Moser et al, 2010). SCM systems and the business process are regarded as two different entities more so in small
and medium software SMEs. This may lead to the SCM process that does not bear relevance to the SME’s business agenda leading to the

subsequent withdrawal from business operations. This may undermine the quality of the final software product (Clarke et al, 2010; Loumos

et al, 2010; Clarke et al, 2011).

In inflexibility of SCM models, the software organizations should employ various software tools for completing projects properly (in terms

of budget, schedule and quality) according to defined software process. The necessity of using tools for software development is increasing
steadily due to cost and schedule pressures on software projects and increasing complexity of projects in terms of management and technical

aspects. Indeed, it is impossible to perform most of the tasks without the use of corresponding tools. As the use and importance of these
tools is increasing, the integration of tools becomes an issue under consideration.

The integration of such tools enabling the streamlining of individual tools by providing sharing of data and methods among applications

(Nalbant, 2004).There exist studies regarding the integration of these tools, although these studies are not in the desired level (Forte, 1989 &
Sharon & Bell, 2000). These studies focus on the achievement of collaborative working of tools with each other. On the contrary, the need

for the integration to collect and unify high-level operational information in order to enable quantitative management (planning, execution,

monitoring) of software projects, remains uncovered (Nalbant, 2004).
The existing SCM systems/models were initially designed for bigger structures. The cost of evaluation process and its duration is

disproportional to the available resources. The number of actors involved in the SCM process is very small and usually, one actor plays

many roles. These factors compound to make flexibility of the SCM systems/models to blend with the software SME business process
almost impossible (Aggarwal, 2012; Jimenez et al, 2010; Habra et al, 2011).

Contextualized Software Configuration…

www.theijes.com The IJES Page 95

In the aspect of double maintenance, the problem occurs when the same version of a program, component or file has to be maintained in

different places. With the growing maturity and increasingly powerful functionality of SCM systems, parallel development has become a
norm rather than an exception. It is rare to find project in which locking is practiced (Sarma et al, 2007). Double maintenance is form of

direct conflict and according to (Sarma et al, 2007), direct conflicts are caused by concurrent changes to the same artifact. Double

maintenance is a problem to software SMEs as it leads to problematic issues of coordination and communication thus affecting productivity
and product quality (Jimenez et al, 2010; Aggarwal, 2012; Duhan, 2012).

Simultaneous update is whereby the problem occurs when two developers check-out a component (Shamsaie & Habibi, 2011).The first
developers commits modifications, while the second one checks-in the same, erasing the ones made by the first one. Simultaneous update

occurs when two or more developers take the copy of the configuration item and make changes.

When the developer returns the modified configuration item to the master library, modifications made by developers who have returned own
configuration item earlier are lost. Charge-out/charge-in or locking mechanism is required to prevent simultaneous update (ESA Board for

Software Standardization and Control, 1995). Simultaneous update in software SMEs leads to substantial loss of time and computing

resources as the work in question has to be re-done. This strains the already limited resources of the software SME and may affect
productivity and product quality in the long run (Ghobakhloo et al, 2011; Alzaga & Martin, 2010; Jimenez et al, 2010).

In logical conflict, the problem occurs when changes are committed while the component or part of the program that has not been modified
stops the changes from working (Priedhorsky & Terveen, 2011). The authors add that logical conflict may hamper the development of

products in software SMEs leading to vast resource-consumption in solving the subsequent problems encountered under such situations.

In the aspect of bad branching strategy, the problem is manifested when the complex branching strategy applied creates difficulties in

knowing the purpose of each branch or how the branches should be merged. In addition, this also can lead to merge problems. In relation to

studies conducted by Shihab et al (2012), branching plays major role in the development process of large software. Branches provide
isolation so that multiple pieces of the software system can be modified in parallel without affecting each other during times of instability.

The need to move code across branches introduces additional overhead whereby the branch in use can lead to integration failures due to

conflicts or unseen dependencies. Branches are used extensively in commercial and open source development projects, however, the effects
that different branch strategies have on software quality are not well understood. Merge problems as a result of bad branching strategy are

common in software SMEs as these firms do not have clearly established structures to manage branching during the firms’ software

development process. This may lead to problems in productivity and product quality (Anquetil et al, 2010; Kaur & Singh, 2011; Ruparelia,
2010).

Users need to better understand configuration management processes in order to be able to demand better supportive implementations for

such processes. This requires detailed definition of CM processes; understanding of how much control is to be enforced compared to how
much guidance is to be given by the process manager; adequate implementations; and monitoring of how well the process is followed and

where implementations can be made. Better understanding and implementation of process enables improved support for users in attaining

higher quality of product, more time for being productive on creative tasks and better forecasting of software costs (Loumos et al, 2010;
Aiello & Sachs, 2010; Berzisa & Grabis, 2011).Certain steps must be carried out in logical or orderly manner, but there is little automated

guidance as to which steps should be done when. The order of commands in the menu suggests the command order, but this is really a
simple guide. At any point in time user cannot immediately know the next step. Furthermore, to implement the process, more than step

sequences (control flow) are needed and some semantic context required too. The configuration and change control (CCC) turnkey system

keeps audit trail of the CCC commands that the user issues. On the spotlight is the fact that the audit trail for emergency fixes gives no
indication whether any file was checked out and changed. Consequently, there is no data associated with the audit trail, only some logging

of actions. This information may be insufficient for particular organization where simple mechanism for the audit trail is provided as

customers may want semantic content in the audit trail. In regard to this, the process implementation involving control flow of commands
and avoiding capturing of data state is likely to be insufficient for the customer (Loumos et al, 2010; Aiello & Sachs, 2010; Berzisa &

Grabis, 2011).

III. PROPOSED APPROACH TO ADDRESS RESEARCH GAPS IDENTIFIED

This study concentrated on the aspect of clear definition of processes in the process functionality requirement of SCM models. The

following areas of weakness under this aspect were of major concern to this study, simultaneous update, logical conflict and tracking of

change requests and defect reports.

In simultaneous update, charge-out/charge-in or locking mechanism is required to prevent simultaneous update. This study proposed the use

of elements of the check-out/check-in model to prevent simultaneous update. Activities that use repository have long duration, while treating
the entire activity as one transaction is impractical. Systems crashing during such an activity results in loss of days of work. As a result, the

repository manager must support check-out and check-in of objects. The check-out operation copies the object from the shared repository

into the user’s private workspace. After working on the object, the user issues the check-in operation, which copies the object from the
private workspace into the shared repository. Check-out and check-in execute as (separate) short transactions. Essentially, check-out sets a

persistent lock on the object, which is released by check-in. Check-out should support shared and exclusive modes (Ghobakhloo et al, 2011;

Alzaga & Martin, 2010; Jimenez et al 2010).

In logical conflict, this study proposed the embracement of elements of the long transaction model in order to address the problem of logical

conflict. Transaction is started when making the change. The change is made in the workspace, which represents the working context and
provides local data storage visible only within the scope of the workspace. This (workspace) may be mapped into the file system allowing

transparent access to the repository for the development tools. The workspace consists of working configuration that are frozen states of

previous working configurations. The working space originates from bound configuration in the repository or preserved configuration of
enclosing workspace. When the changes are finished, the transaction is committed, which effectively creates new version of the

configuration in the repository or enclosing workspace and makes the changes visible outside the workspace. Finally, the workspace may be

deleted or used for further changes. If the workspace originates from another workspace, the results is hierarchy of workspaces. The
different levels in the hierarchy represent different levels of visibility. The bottom workspaces belong to the individual developers, one level

up is the workspace for the team and the next level may be visible to the testing team and until the hierarchy ends to the repository

(Priedhorsky & Terveen, 2011).

In the aspect of tracking of change requests (CRs) and defect reports (DRs), the change process begins when the need for the change occurs.

The proposer of the change fills the change request form describing the change, reason, items and versions to be worked on. Each change
request should also get an identification number.

Contextualized Software Configuration…

www.theijes.com The IJES Page 96

CRs go through the whole change process and shall be complemented with more information in each stage. After the CR has been initiated,

it is evaluated and either approved or rejected by the configuration control board. After the evaluation, the configuration control board
(CCB) may reject the CR and include the reason to the change request. If the CR is approved, it is delivered further for implementation.

During the implementation of the change request, this study proposed that the change set model shall be applied, after which the process

shall be verified (Rupareila, 2010; Chen & Chen, 2009; Fruhauf & Zeller, 1999).

The main concept in the change set model is the change set, which represents the set of modifications to different components making up the

logical change. Typically when implementing the requested change to software requires modifications to several components. Change sets
involve several aspects. Developers can work with groups of components belonging to the same logical change instead of dealing with each

component separately. Change requests, which are descriptions of the changes to be made, may be easily linked to the actual changes made

to the components. Queries on the dependencies between logical changes, changed components, and versions of configurations can be made
(Rupareila, 2010; Chen & Chen, 2009; Fruhauf & Zeller, 1999).

These queries include determining which:

i. Component has been modified as part of the logical change

ii. Change sets are included in the particular configuration
iii. Configurations include the particular change

During the stage of change request, who is responsible for decisions and the definition of the records to be kept is determined. The next

stage is to determine why the change request has been made. This involves two aspects – enhancements and error corrections. If the change

request has been to correct errors, the next level shall be product defect tracking. The product defects tracking is integrated with two levels:

i. SCM repositories under which the check-out/check-in model shall be applied
ii. Automated testing facilities

The next stage after product defect tracking is “investigation to ascertain the cause of the error.” At this stage, the cause of the error is

determined. The next and final stage shall be “proposal to fix error and cost estimation to fix the error.” To document the product
knowledge, this study proposed the use of the SCM repository (Rupareila, 2010; Chen & Chen, 2009; Fruhauf & Zeller, 1999).

Detailed Description and Design of the Contextualized SCM Model

To address these challenges, this study proposed process modeling approach that includes the context into process descriptions, enabling

process owners to design processes that can be changed and switched during execution. In this approach, the firm is viewed as the value
producing mechanism with modular capabilities and flexible organization design for action. Change should be regarded as the switching of

context of the software project using the process. The proposed process model integrates the context into software processes, enabling the

process owners to “design processes for change” resulting in adaptive and modular processes. Moreover, the process designs can be reused
by different projects with similar context and switched during process execution if the given context changes. The proposed model adopts

two ideologies to the processes, the definition of context and the designing for change. In the former ideology, the context includes the
reason for being and restraints of the projects set by the environment or software development firm whereas, in the latter ideology, instead of

inert process descriptions, the modular and ready-to-change design is suggested by the model. The structural and logical elements of the

proposed model are process sequence, process abstraction, context and solid processes. In process sequence, the ISO/IEC 12207:2008
standard is adopted to decompose the software configuration management process. In the aspect of process abstraction, the unified

modelling language is applied to define the operations performed, the inputs and outputs of the processes are portrayed together with the

attributes.In context definition, the context is defined in terms of the strategy of the software firm, whether the firm focuses on research and
development, market or client. In solid process, each context above is handled with the same abstract process with the same operations, but

the way of accomplishment varies according to the context. In adopting these four structural elements that are in line with the two ideologies

aforementioned, the “element of contextualization from the study” aspect of the proposed model is realized.
The proposed model then focuses on three of the most significant weaknesses/challenges identified in the existing four standard SCM

models to realize the contextualized model that is suitable for small and medium software development firms within the Kenyan context.

The proposed model adopts elements of the check-out/ check-in model to solve the challenge of simultaneous update, long transaction
model to address the issue of logical conflict and change set model to solve the problem of tracking of change requests and defect reports.

The process chain of the SCM process is shown in Figure 2. The processes are broken down until the level where the process is performed

by the single owner. At the end of the breaking-down, the process abstraction and the solid processes summarizing the differences in
contexts of different projects are illustrated:

Figure 1: Software Configuration Management Process (ISO/IEC 12207:2008 Standards)

The element of contextualization from the study is structured into four main structural elements - process sequence, process abstraction,
context definition and solid process.

Firstly, in process sequence, the ISO/IEC 12207:2008 standard is adopted to decompose the software configuration management process.

The software configuration management process is decomposed into the following sub-processes that occur in the successive definite chain
that involves software configuration identification, control, status accounting, auditing and software release and delivery as shown in Figure

1 above. This provides the model with the process-centric approach that is easier to apply, adopt, contextualize, adapt to varying scenarios
and contexts, debug in case of occurrence of errors and implement due to modularity. The illustrated “software configuration management

process” is decomposed using ISO/IEC 12207:2008 standard, and the process sequence is shown in Figure 2 below.

Contextualized Software Configuration…

www.theijes.com The IJES Page 97

Figure 2: Software Configuration Management Sequence (ISO/IEC 12207:2008 Standards)

Secondly, in process abstraction, assuming that “software configuration management” is performed by the single role in the firm (the
process owner can be the person or group of people), breakdown is deemed to be complete and definition of the process abstraction starts.

The portrayal of the abstraction is undertaken by the process owners. The process abstraction is depicted by notation derived from the

unified modeling language. The operations performed, the inputs and outputs of the process are represented together with the attributes. The
inputs of the process are produced by supplier processes and used as inputs to the consumer processes. The supplier processes in this case

are the preceding procedures to the current stage in progress. The consumer processes are the procedures being fed by the preceding stage.

The attributes are the individualities of the process that determine the changing behavior of the operations. For the “software configuration
management process”, the operation is “developing software configuration management processes” and the inputs are process

implementation, configuration identification, configuration control, configuration status accounting, configuration evaluation and release

management and delivery.

The outputs are the “software configuration management processes”. The attributes are the participation of end-users/customers, variety of

project features, and diversity of SCM processes. There can be as many operations and attributes as desired. The process abstraction
provides the same interface to all projects using the “software configuration management” process. The changes in the context are

summarized in solid processes which are determined in accordance with the context. In the next section, determination of context is

portrayed. Thirdly, after process abstraction, the next step in the model is context definition in alignment with the strategy of the software
development firm. The firm strategy pervades in the portfolio of projects with different conditions through the context. Since the conditions

and limitations can be different for singular projects, several contexts need to be defined. The reason to exist and the restraints of the

projects are portrayed through the context. To illustrate the model, the three different possible contexts are involved as highlighted below.

Context 1: Research and development (R&D) focused context where types of projects exist to develop software for the purposes of gaining

technical capability in certain domain. The restraints are conformance to certain standards, minimum profit level, and given level of client
satisfaction. There are no or few clients at the time of development.

Context 2: Market-focused context whose reason for existence is profit. The restraints are conformance to capability maturity model

integration (CMMI) level 5, and given level of client satisfaction. The number of clients and/or end-users is high in this kind of projects.
Context 3: Client-focused context: The type of project aims to fulfill the client’s requirements. The restraints are conformance to capability

maturity model integration (CMMI) level 5, minimum profit level and strict adherence to client requirements. These are usually client-

specific projects developed with the participation of the client.
For context 1, high technology requirements may exist, whereas for context 2, use of familiar technologies and similarity to previous

projects is of importance. For the third context, adherence to client requirements takes priority and the operations need to be carried out

accordingly. Integrating the context in the process model enables the firm to act dynamically in response to changes in the environment.
Afterwards, the solid processes are described for each context.

In context definition, determination of context is portrayed. Context is defined in terms of the strategy of the software firm whether the firm

is focused on research and development, market or client. In solid process, each context above is handled with the same abstract process
with the same operations, but the way of accomplishment varies according to the context.

Fourthly, in solid process, each context is addressed by the solid process as shown in Figure 3. Each solid process describes the same

abstract process with the same operations, but the way of accomplishment varies according to the context.
The number of solid process portrayals depends on the number of different portfolios in the software firms, and new contexts can be added

to respond to the changes in the environment. Moreover, projects having different contexts can use solid process from the repository suitable
to the specific context, by switching the solid process being used. The process models are organized into a library of abstract and solid

processes.

Contextualized Software Configuration…

www.theijes.com The IJES Page 98

Software Configuration Management Process

 Participation of clients/end-users
 Variety of project features

 Diversity of SCM processes

Develop SCM processes (process implementation, configuration identification, configuration control, configuration status accounting,

configuration evaluation and release management & delivery)

Figure 3: Solid Process Representation

After the contextualizable management of the SCM process, the next process is the software configuration identification, which leads to the
software configuration system comprising of the process-centered functionalities of practice that occur sequentially as process functionality,

controlling functionality, accounting functionality and auditing functionality. To address the challenge of simultaneous update, the element

of check-out/check-in element is adopted. In relation to the challenge of handling logical conflict, the element of the long transaction model
is adopted. Regarding the challenge of handling the tracking of change requests and defect reports, the element of the change set model is

adopted. This entire chain of sub-processes forms the SCM system that supplies the final process of software release management and

delivery eventually realizing quality software that has undergone all the necessary rigours, checks and balances of effective and standard
model. The achieved SCM model has process-centered functionality view of the software configuration management process. This approach

includes the context into process descriptions, enabling process owners to design processes with future change in consideration and switch

processes during execution resulting in adaptive and modular processes. Moreover, the process designs can be reused by different projects
with similar context and be switched during process execution if the given project’s context changes. This contributes significantly to

addressing pertinent issues, problems and weaknesses inherent in existing SCM models and systems that have adopted these designs with

such functionalities. Figure 4 illustrates the proposed SCM model.

Figure 4: Summarized Diagrammatic Representation of Proposed SCM Model

Software configuration

management processes – Context 1

 Participation of clients/end-
users: Low

 Variety of project features:

High
 Diversity of SCM processes:

High

Perform SCM processes

development using agile methods &

include high changeability of
requirements in the process

SCM processes – Context 2

 Participation of clients/end-

users: Low

 Variety of project features:
Low

 Diversity of SCM processes:

Low

Perform SCM processes

development by carrying out

interviews, client surveys & use
previous processes applied for

reused processes and procedures

SCM processes – Context 3

 Participation of clients/end-

users: High
 Variety of project features:

Low

 Diversity of SCM
processes: Low

Perform SCM processes

development by organizing joint
review meetings & develop

prototypes to better understand

SCM processes

Contextualized Software Configuration…

www.theijes.com The IJES Page 99

IV. RESEARCH METHODOLOGY

The underlying research method of this study was multi-strategy research design or mixed-method research which is both descriptive and
evaluative. The study focused on the adoption of empirical software engineering in small and medium software development firms. This

choice was influenced by the fact that it is a flexible field of research that emphasizes the use of empirical studies of all kinds to accumulate

knowledge. Under the empirical research method, this study focused on the descriptive research which involved two components of
quantitative and qualitative research design. The study used survey research and naturalistic observation to get clear picture of how software

configuration management is practiced in firms. In regard to the survey research, the multi-method approach used in this study involved the

use of questionnaires and interviews to provide richer data and the opportunity to compare the software configuration management practice
survey results with the results from the adoption of the proposed model. The method assisted in the collection of data and information about

some state of affairs querying representative sample of the study population involving small and medium software development firms in

Nairobi.

During the naturalistic observation, the study population of small and medium software development firms were observed in the natural

setting without manipulating the study population in any manner whatsoever. This was in order to observe how the software configuration
management practice is carried out if at all it is observed in the study population. In addition, the naturalistic observation used was meant to

capture information regarding the SCM practice in firms, which the respondents may not have disclosed during the survey through

questionnaire and interview.
The unit of analysis for the study was any small and medium software development firm. The target population included all small and

medium software development firms within the city of Nairobi, Kenya, which develop software for sale as well as in-house development

groups within organizations. In this study, the small and medium firms targeted were the firms with employees not exceeding 50 in number.
The number of small and medium software development firms in Nairobi is enormous as the influx of new small and medium firms is

estimated at 200 - 250 per annum which stood at 1850 firms as at 2013 (Kenya Companies Registry, 2014). The listing of these companies

was acquired from the authenticated listing source of Kenyan software development firms at the Government Registrar of Companies
Department.

The sample of this study comprised of small and medium software development firms drawn from five distinct strata of the city of Nairobi,

namely Nairobi central business district, Eastlands, Westlands, Upper Nairobi and Southlands.
In this study, it is clearly indicated which sort of firms fall under the category of small and medium software development firms. The study’s

long-term intentions are for the proposed software configuration management model to be internationally acceptable and adopted. The study

proposed to use the sample population of small and medium software development firms within the city of Nairobi, Kenya as the yardstick
to test the practicability and adoptability of the proposed software configuration management model to the firms. To determine the sample

size for the study, Fisher’s formula was employed as follows:

n=Z2pq/d2
Where, n= desired sample size

Z= standard normal deviation, which is set at 1.96 (95% confidence level)

P= proportion of the targeted population that have the characteristic focused in the study, which is estimated at 85% (0.85).
q=1-p

d= degree of accuracy, which is set at 5%. The degree of proportion of error that should be accepted in the study is 0.05, since the study has
95% confidence level.

Therefore, Desired Sample (n) = {1.962*(0.85*(1-0.85)}/0.052

n= 196
Since the total population for each region is less than 10,000, the researcher applied the finite correction formulae (nf). This is applied

together with the Fisher’s formulae in successive steps as indicated:

N = 1850, n = 196

nf= 196/(1+196/1850) = 177

Crucial aspect of the sampling technique is determining the unit or level of analysis. This study recognized that research work is often

couched in social setting and identified ten different levels (units) of analysis, namely society, profession, external business context,
organizational context, project, group team, individual, system, computing element (program) and abstract concept. The unit of analysis for

this study is the organization, which is, small and medium software development firms. In the sampling of the population, the study used the

cluster sampling technique. The rationale for the sample cluster sampling is where the population is divided into units or groups called strata
(usually there are units or areas in which the population has been divided in), which should be as representative as possible for the

population, representing the heterogeneity of the population being studied and the homogeneity within each of the strata. The sample of this

study was selected from the population of small and medium software development firms within Nairobi city. In sampling of the population,
the study area was divided into five distinct strata - Nairobi Central Business District, Eastlands, Westlands, Upper Nairobi and Southlands.

Each of these strata represented the heterogeneity of the population being studied and the homogeneity within each of the strata as justified

by the fact that the firms are located in the same geographical zone.
The preferred sample size selected for this study was 177 small and medium software development firms. From each software development

firm, 2 software developers were selected to participate in the study. These were preferably the software lead developers and one of the

developers, who was selected through the use of simple random method from the other developers/employees. This made total of 354
respondents for the study as tabulated in Table 1.

TABLE 1: SAMPLE DISTRIBUTION

STRATA

NUMBER OF FIRMS TOTAL PARTICIPANTS PERCENTAGE

Nairobi CBD 37 74 20.8

Eastlands 35 70 19.8

Westlands 35 70 19.8

Upper Nairobi 35 70 19.8

Southlands 35 70 19.8

TOTAL 177 354 100

Contextualized Software Configuration…

www.theijes.com The IJES Page 100

In this study, only primary data was collected and included both qualitative and quantitative in nature. The data collection procedures or

methods employed were questionnaires for the software developers and interviews for the lead developers. The questionnaire comprised of
four sections each based on the objectives of the study. The questions were both open and closed ended or structured in such a manner that

all objectives of the study were captured. The questionnaire tool was used to collect data from the software developers. This was through

drop-and-pick method for the sake of the respondents’ convenience. Data from the lead developers was collected using the interview
method. Questions in the interview were designed to acquire both qualitative and quantitative data. The interview questions consisted of four

sections each based on the study objectives. The questions captured various themes and sub-themes based on the study’s objectives. The

face to face interviews were conducted with the aid of interview guide that was designed to capture relevant information in line with the
objectives of the study. Pilot study was necessary in order to help test the validity of the research instruments used in this particular study.

The study covered only two firms for the pilot study as convenience in terms of location and previous acquaintances. The study pre-tested

the two instruments using face-to-face interviews with two key informants who were software developers and software engineers by
profession. The selection of interviewees for these pre-tests was designed to obtain maximum feedback from software developers in various

roles. Participants for the pre-tests included experienced software developers from specialist developer organizations. The first part of the

interview and the questionnaire sought to find demographic information and organizational characteristics. The second part sought to find
information regarding software development practices in the concerned firms. The third part sought to find information regarding the

challenges experienced in software configuration management in the concerned firm(s). The fourth and final part sought to provide space for

respondents to speak or record on which aspects of the software configuration management the respondents deemed needed improvement
and to suggest how the research could help. Mugenda & Mugenda (1999) define validity as the accuracy and meaningfulness of inferences,

which are based on the research results. In other words, validity is the degree to which results obtained from the analysis of the data actually

represent the phenomenon under study. The piloted questionnaires were assessed for clarity and those items found to be inadequate or vague
were modified to improve the quality of the research instrument thus increasing its face validity. The reliability of the tool was tested using

the Cronchbar test. In Gray (2004), coefficient of at least 0.7 for the tool will be considered sufficient. In this case, the tool obtained

coefficient of 0.867. This is greater than the recommended coefficient and therefore confirms the validity of the tool.
Software professionals engaged to test the reliability of the research instruments established that in the event the study is repeated, the results

will not deviate from those realized and consequently will be similar.

A letter of introduction provided the basis of conducting formal study in the concerned firms. The letter explicitly illustrated the purpose of
this study’s enquiry into the software configuration management practice of the participating firms. Using this letter, data was collected from

the specified firms with a view to capturing the aspirations of the study objectives. Prior to collection of data through questionnaires and

interviews, respondents were assured of the confidentiality of the information provided. The respondents were clearly informed on the
purpose of the study. The study was carried out on a mutual agreement to uphold the principles of honesty and transparency in the

information sought for and provided by both the researcher and the respondents.

Data analysis involved the systematic application of statistical and/or logical techniques to turn raw data into information that was used in
making decisions. The questionnaires were coded and edited for analysis using Statistical Package for the Social Sciences (SPSS), and

quantitative data analysis was used to give descriptive statistics such as mean and standard deviation that were then presented in form of

tables and figures for easy understanding and interpretation. Thematic representations were employed to present the qualitative data obtained
from the interviews as well from the questionnaires.

V RESULT AND DISCUSSION

5.1 Result

The study realized response rate of 85.6%. Total of 303 respondents participated in the study representing 85.6% of the targeted sample size.
Among the sampled lead developers, 80.2% responded to the study while 91.0% of the sampled developers responded. This information is

as tabulated in Table 2 below:

TABLE 2: RESPONSE RATE

 RESPONSE PERCENTAGE

Lead Developers 142 80.2

Developers 161 91.0

TOTAL 303 85.6

5.1.1Background Information of Respondents

This study sought to establish background information of the respondents based on professional expertise, gender, age, experience in

software development, educational level, number of employees in the firm and organizational and decision communication structure.

5.1.1.1 Professional Expertise

In terms of professional expertise, the results are as indicated in Table 3. In the study, 46.9% (n=142) of the respondents were software lead

developers, 39.9% (n=121) represented software developers, 8.3% (n=25) were programmers while the least in the participation were

software quality assurance officers with 15 respondents representing 5%. This indicates that the study focused on technical employees of the
concerned firms, whose main role is software development and related activities. This ensured that the study acquired expert and

professional data and information regarding the practice of software configuration management in such firms.

TABLE 3: PROFESSIONAL EXPERTISE

RESPONDENTS FREQUENCY PERCENT (%)

Software Developers 121 39.9

Programmers 25 8.3

Software Quality Assurance Officers 15 5.0

Software Lead Developer 142 46.9

TOTAL 303 100.0

Contextualized Software Configuration…

www.theijes.com The IJES Page 101

5.1.1.2 Gender of the Respondents

The study established the gender of the respondents as explained in Table 4 below. The findings show that, 70% (n=113) of the developers
were male while 30% of the developers (48 in number) were female. Interestingly, all the software lead developers were male. These results

indicate that the software industry involving small and medium software development firms is dominated by males as compared to females

who form the minority population.

TABLE 4: GENDER OF THE RESPONDENTS

 DEVELOPERS LEAD

DEVELOPERS

RESPONDENTS FREQUENCY PERCENT(%) FREQUENCY PERCENT(%)

Male 113 70.0 142 100.0

Female 48 30.0

TOTAL 161 100.0 142 100.0

5.1.1.3 Age of the Respondents

From Table 5, 73.3% of the software developers in the study were aged between 21 and 30 years while 26.7% were aged between 31 and 40

years. In addition, 86.6% of the lead developers were in the age group (21-30) while 13.4% (of the lead developers), aged between 31 and

40 years. This indicates that all the developers actively involved in software development were aged below 30 years, which was similar for

the lead developers. This is an indication that the experts and professionals actively involved in software development, are relatively young
in age.

TABLE 5: AGE DISTRIBUTION

DEVELOPERS FREQUENCY PERCENT(%)

21-30 118 73.3

31-40 43 26.7

TOTAL 161 100.0

LEAD DEVELOPERS

21-30 123 86.6

31-40 19 13.4

TOTAL 142 100.0

5.1.1.4 Experience Level

In the aspect of experience in software development projects, the study established the following information as indicated in Table 6.

Majority (77.6%) of the developers in the participation had work experience of 0-2 years while 22.4% had 3-5 years of experience. Majority

(83.8%) of the lead developers in the participation had 3-5 years of experience, while 16.2% had 6 years and above experience in software
development. This indicated that majority of the developers practicing in small and medium software development firms have few years of

work experience in software development, as is also the case for lead developers.

TABLE 6: EXPERIENCE IN SOFTWARE DEVELOPMENT PROJECTS

DEVELOPERS

FREQUENCY PERCENT(%)

0-2 Years 125 77.6

3-5 Years 36 22.4

TOTAL 161 100.0

LEAD DEVELOPERS

3-5 Years 119 83.8

6 Years and above 23 16.2

TOTAL 142 100.0

5.1.1.5 Level of Education

In terms of educational level, the results are as indicated in Table 7 below. In the participation, 87% of the software developers were
bachelor’s degree holders while 13% had diploma qualifications. All the lead developers were bachelor’s degree holders and higher, where

76.8% had bachelor’s degrees and 23.2% had master’s qualifications. This indicates that majority of the developers and lead developers in
small and medium software development firms hold bachelor’s degrees.

TABLE 7: EDUCATIONAL LEVEL

DEVELOPERS FREQUENCY PERCENT(%)

Diploma 21 13.0

Bachelor’s Degree 140 87.0

TOTAL 161 100.0

LEAD DEVELOPERS

Bachelor’s Degree 109 76.8

Master’s Degree 33 23.2

TOTAL 142 100.0

Contextualized Software Configuration…

www.theijes.com The IJES Page 102

5.1.1.6 Number of Employees

As shown in Table 8 below, regarding the number of employees, the study found out that majority (48.7%) of the firms had less than 10

employees, 25.7% had between 11 and 20 employees, 15.1% with 21 -30 employees, 6.6% had 31-40 members of staff while the least were
firms with more than 40 employees representing 3.9% of the total firms studied.

TABLE 8: NUMBER OF EMPLOYEES

FIRM EMPLOYEES PERCENTAGE(%)

74 10 and below 48.7

39 11-20 25.7

23 21-30 15.1

10 31-40 6.6

6 Above 40 3.9

TOTAL (152) 100.0

5.1.1.7 Organizational Decision Making

The organizational and decision communication structure is highlighted as follows: From the findings as indicated in Figure 5, majority of
the firms used the top-down approach in organizational and decision communication structure. This is as represented by 60% of the

respondents. 30% of the respondents indicated use of the bottom-up approach communication structure with the rest (10%) of the

respondents, preferring to use the horizontal approach structure. This indicates that in majority of the small and medium firms, decisions
regarding software development are made from the top and communicated downwards the organizational structure.

Figure 5: Organizational and Decision Communication Structure

5.1.2 SCM Approach Employed

The study sought to establish the approach employed by firms in relation to SCM practice as indicated in Figure 6.50% of the firms employ
the check-out/check-in model in software configuration management, 20% apply the change set model and 10% use the composition model.

On the contrary, 20% of the firms indicated no use of software configuration management practice at all, hence, had no particular

approaches employed. This indicates that, majority of the software development firms studied actually employ the existing traditional SCM
models, namely: change set model, composition model and check-out/check-in model.

Contextualized Software Configuration…

www.theijes.com The IJES Page 103

Figure 6: SCM Approach Employed

In addition, the study aimed at establishing the application of conventional and standard phases of SCM as indicated in Table 9. The study

results indicate that, majority (60%) of the respondents, do not practice conventional and standard phases of software configuration
management. 40% of the respondents indicated that the firms employ conventional and standard phases of SCM process in software

development projects. This is clear indication that majority of the firms do not employ any conventional and standard procedure in

practicing SCM.

TABLE 9: USE OF CONVENTIONAL AND STANDARD PHASES OF SCM

OPTION FREQUENCY PERCENT (%)

Yes 121 40.0

No 182 60.0

TOTAL 303 100.0

5.1.3 Effectiveness of Existing SCM Model Employed

One of the objectives of this study was to establish the level of perception towards SCM process by developers and lead developers as
indicated in Table 10 below. The findings indicate that, only 11.8% of the developers had high level of understanding of the SCM process,

19.3% represented moderate level while majority (68.9%) had low level of perception of the process. For the lead developers, 52.1%

represented low level of perception of the process, 26.1% had moderate level and only 21.8% showed high level of perception of the SCM
process. This explicitly indicates that majority of the software developers in small and medium software development firms in Kenya, have

low level of understanding of the SCM process in software engineering. This puts into questionable doubt the effectiveness of the existing

SCM models employed by firms in relation to SCM practice during software development.

TABLE 10: PERCEPTION TOWARDS THE SCM PROCESS

PERCEPT

DEVELOPERS LEAD DEVELOPERS

 FREQUENCY PERCENTAGE FREQUENCY PERCENTAGE

High 19 11.8 31 21.8

Moderate 31 19.3 37 26.1

Low 111 68.9 74 52.1

TOTAL 161 100.0 142 100.0

TABLE 11: APPLICATION OF THE SCM PROCESS

ACTIVITY MAX MIN MODE MEAN STD. DEVIATION

Practice SCM regularly 4 1 2 2.1000 .7497

Practice SCM when need arises 5 1 3 3.5000 .7851

Practice SCM when there is enough software development

time

5 3 4 4.5000 .8498

Practice SCM when there are available software engineers

well conversant with the process

5 1 3 3.0000 .9071

Practice SCM when client demands changes to already 5 1 3 3.5000 .8372

Contextualized Software Configuration…

www.theijes.com The IJES Page 104

developed software

Practice SCM when software errors occur in the course of the

software engineering process and need to identify the root cause

of the problem

5 2 4 4.1000 .7529

Practice SCM only in high-value software projects with large

monetary returns

5 1 3 3.8000 .8668

Practice SCM only when software eventually shall be

subjected to quality assurance test before delivery to the client

5 1 3 3.1000 .9486

Practice SCM randomly on software development projects 4 1 2 2.1000 .8756

Do not practice SCM on software development projects 5 1 3 3.5556 .9379

In addition, this study aimed to evaluate the effectiveness of the existing SCM models employed in small and medium software firms. In this

regard, the study aimed to find out how firms apply the process during software development as indicated in Table 11. The table summarizes
the responses obtained from the study participants regarding the extent to which firms employ the software configuration management

process during software development projects. The means and standard deviations are based on the Likert scale where mean in the interval

1.0-1.9 is strong extent of disagreement, 2.0-2.9 is disagreement, 3.0-3.9 is neutral, 4.0-4.9 indicates agreement extent while above 4.9
indicates strong extent of agreement. Based on this Likert scale, the factors in the table can be grouped into various categories explained as

follows: the respondents indicated that firms practice SCM regularly as shown by the mean of 2.1000 and others did practice randomly on

the software development projects represented by mean of 2.1000. This is based on the response means which lie under the interval 2.0-2.9
which is disagreement, in this case with the opinions given in the questions. The second category falls under the neutral interval of 3.0-3.9.

In this category, responses showed that firms practice SCM when need arises (3.5000); others practice SCM when there are available

software engineers well conversant with the process (3.0000); firms practice SCM when client demands changes to already developed
software (3.5000); firms practice SCM only in high-value software projects with large monetary returns (3.8000); firms practice SCM only

when software eventually shall be subjected to quality assurance test before delivery to the client (3.1000); and do not practice SCM on

software projects. These results from the study raise numerous questions regarding the effectiveness of the existing SCM models that are
applied in the small and medium software development firms regarding software activities. When respondents provide neutral responses

(mean interval of 3.0-3.9) to significant, relevant and pertinent issues of SCM as portrayed above, this without doubt shows the

ineffectiveness of the existing models and approaches employed by small and medium software development firms in practice.
The third grouping category, the Likert scale interval of 4.0-4.9 included the following responses - firms practice SCM when there is enough

software development time (mean of 4.5000); firms practice SCM when software errors occur in the course of the software engineering

process and need to identify the root cause of the problem (4.1000). These two responses put into doubt the effectiveness of the approach
employed by small and medium software development firms regarding the practice of SCM. The standard deviations measure the variability

of the individual values from the mean value.

Values above 1 indicate that the variability was significant and could change the results significantly in a case where the entire study

population was used rather than using the sample. The standard deviation values obtained are all less than 1. This indicates that the study

results are valid and therefore cannot be significantly changed by the use of other population units apart from those currently used in this

study.
On evaluating the extent to which software configuration management is practiced across all the studied firms’ software projects, the study

findings indicated in Table 12 show that only 10.2% of the firms practiced SCM across all the software projects undertaken. On the

contrary, 89.8% of the firms did not put into practice SCM across all own software projects. Among the firms, as indicated in the table,
87.2% had interest in improving software configuration management processes in the concerned firms while 12.8% were not interested but

satisfied with how SCM processes are practiced during software development activities.

TABLE 12: PRACTICE OF SCM PROCESS

 Practice SCM across all Projects Total

 Yes No

Interest in

Improving SCM

Process

Yes Count 25 240 265

% of Total 8.2% 79.0% 87.2%

No Count 6 32 38

% of Total 2.0% 10.8% 12.8%

Total Count 31 272 303

% of Total 10.2% 89.8% 100.0%

The study tested the association between the practice of SCM across all projects and the interest in improving the process. The results are as

presented in Table 13. From the table, it is clear that there is strong positive correlation between the variables which are also statistically

significant at 5% level. Table 13 pg.55 shows Pearson correlation value of 0.715, which is positive correlation and interval above 0.7 for
strong correlation. The P-value obtained was 0.006, which was less than 0.025, which normally is the critical value in a 2-tailed test at 5%

level. This therefore reveals that, there is strong association between the interest to improve the SCM process and the extent to which the

firms practice the SCM process in their projects.

TABLE 13: CORRELATION BETWEEN SCM PRACTICE AND INTEREST TO IMPROVE

Value Asymp. Std. Errora

Contextualized Software Configuration…

www.theijes.com The IJES Page 105

Interval by Interval Pearson's R .715 .006

Ordinal by Ordinal Spearman Correlation .715 .011

5.1.4 Challenges Encountered

One of the objectives of this study was to assess the challenges faced by small and medium software firms in relation to SCM practice.

Respondents highlighted numerous challenges as constraints in the use of the process. Respondents, as indicated in percentages, view:

i. SCM as being bureaucratic and hence time consuming to implement (86.7%)

ii. SCM as being time-intensive and therefore time consuming (82.4%)

iii. Frequently changing demands from clients as hindrance to applying SCM (77.8%)

iv. SCM as being cost intensive and therefore uneconomical to practice (76.5%)

v. SCM as being labour-intensive and therefore leads to schedule delays (65.4%)

vi. The process of handling the tracking of change requests and defect reports difficult to manage (65.4%)

vii. Simultaneous update of changes made by different developers (51.4%)

viii. Logical conflict whereby when changes are committed, a component of the program that has not been modified leads to the

generation of software errors when the software or program is run (43.2%)

ix. Smoothly managing the various sub-processes involved when practicing SCM (40.4%)

x. Limited skilled manpower to handle SCM (37.1%)

5.1.5 Proposed Contextualized SCM Model

The aim of this study was to propose contextualized SCM model that is relevant and beneficial to small and medium software firms in

Kenya and other developing countries. The study sought to establish this as indicated in Table 14. The table provides the means and standard

deviations derived from responses to questions that sought the opinion of the respondents regarding the proposed contextualized SCM
model demonstrated to them.

Based on the mean values of the responses given, all the means fall within the interval 4.0-4.9. This indicates that the respondents highly

approved the proposed contextualized SCM model, and were ready and willing to adopt and assimilate it into the firms’ practice during

software development. These findings indicate that the proposed model meets the SCM requirements in terms of the approach employed;

addresses the challenges the software development firms face during the process; highly adaptable, relevant and beneficial to the software

development firms if adopted as well as being effective if adopted for use by the firms in managing the process. The standard deviations for
all the means obtained are all of values less than one. This shows that, the study results could not have been much different from the current

ones in a case where the study would have been conducted using the entire population of the study other than a sample (that has been used in

this case).

TABLE 14: PROPOSED CONTEXTUALIZED SCM MODEL

QUESTION

MIN MAX MODE

MEAN

STD. DEVIATION

Does the proposed model meet your firm’s SCM requirements

in terms of the approach employed?

3 5 4 4.0000 .92582

Does the proposed SCM model address the challenges your

firm faces during the process?

2 5 4 4.1111 .60093

Shall the proposed SCM model be adaptable, relevant and

beneficial to your firm if adopted?

3 5 4 4.2500 .46291

Shall the proposed SCM model be effective if adopted for use

by your firm in managing process?

4 5 4 4.1750 .99103

The participants also suggested recommendations to the proposed SCM model as indicated in Figure 7. From the findings indicated in the

figure, all the respondents of the study recommended the application of the proposed contextualized SCM model in software development
processes; 20% of the respondents recommended with reservations whereas 80% highly recommended its adoption to software development

activities.

Contextualized Software Configuration…

www.theijes.com The IJES Page 106

Figure 7: Recommendations for the Model Adoption

The study findings indicate that, all the respondents agreed that the proposed SCM model shall be practically beneficial to firms once the

model is commercialized and customized to meet the specific individual needs of each firm once adopted. The extent of agreement however
varied amongst different respondents. 50.9% of the developers strongly agreed, 42.9% agreed while 6.2% agreed with reservations.

Similarly, 53.5% of the lead developers strongly agreed, 41.5% agreed and 5% agreed with reservations. This clearly illustrates that the

respondents were highly positive about the benefits that could be reaped from the proposed SCM model.

TABLE 15: COMMERCIALIZATION AND CUSTOMIZATION OF PROPOSED SCM MODEL

RESPONSE DEVELOPERS LEAD DEVELOPERS

 FREQUENCY PERCENTAGE FREQUENCY PERCENTAGE

Strongly Agree 82 50.9 76 53.5

Agree 69 42.9 59 41.5

Agree with Reservation 10 6.2 7 5.0

TOTAL 161 100.0 142 100.0

The study further tested the difference between the means of the responses given by the developers and the lead developers on the level of

agreement, and the benefits of the proposed SCM model. The findings presented in Table 16 below illustrate that the mean response given

for the lead developers and the developers has mean value of 1.196 assuming equal variation of the usefulness of the model. The p-value is
.004, implying that the difference in means is statistically significant at the .05 level with a 2-tailed test. Thus, based on these results, the

study findings are statistically significant and can be relied on to explain the usability and the relevance of the model developed.

TABLE 16: T-TEST FOR DIFFERENCE BETWEEN MEANS

T Df Sig. (2-tailed) Mean Difference

95% Confidence Interval of the Difference

Lower Upper

18.811 71 .004 1.98611 1.7756 2.1966

5.1.6 Effectiveness of Proposed Contextualized SCM Model

The last objective of this study was to evaluate the effectiveness of the proposed contextualized SCM Model.

5.1.6.1 Perception towards Proposed SCM Model

On evaluating the respondents’ perception towards the proposed model, the study findings indicated that most of the respondents (47.2%)
had high perception towards the proposed model. 38.6% of the respondents were found to have moderate perception while 14.2% of the

respondents had low perception. This reveals that a great number of the software developers and lead developers have above moderate level

of perception towards the proposed contextualized SCM model.

TABLE 17: PERCEPTION TOWARDS PROPOSED SCM MODEL

 FREQUENCY PERCENTAGE

Contextualized Software Configuration…

www.theijes.com The IJES Page 107

High 143 47.2

Moderate 117 38.6

Low 43 14.2

TOTAL 303 100

5.1.6.2 Effectiveness of Proposed SCM Model in Software Development Firms

In Table 18, the results on the effectiveness of the proposed SCM model are based on the Likert scale responses given. These were analyzed
to give various statistical measures which measure the variation of the effectiveness among different firms. The minimum value, shows the

lowest rank given on the level of agreement whereas the maximum value provides the highest rank given. The mode statistics show the rank

with the highest number of respondents. The mean provides the average ranks given whereas the standard deviation shows the extent to
which various responses varied from the mean.

The major statistical measure is the mean, which according to the results in Table 18, for all the aspects, was in the range of 4.0 – 4.9, with

all standard deviations less than 1. This indicates that all the aspects had mean response in the interval for agreement, as the respondents
agreed to the various aspects. However, the extent of agreement varied for different aspects as minimum and maximum values indicate.

Most of the aspects had minimum value of 2 indicating that some respondents disagreed whereas all the aspects had maximum score of 5 for
strong extent of agreement. Measuring the mode statistics, most of the aspects in the table obtained mode of 4 meaning that majority of the

respondents agreed.

TABLE 18: EFFECTIVENESS OF PROPOSED SCM MODEL IN SOFTWARE DEVELOPMENT FIRMS

QUESTION

MIN MAX MODE MEAN STD. DEVIATION

Does this SCM Model support clear definition of processes

through the process modelling approach used?

3 5 4 4.7320 .97202

Does this SCM Model address the challenge of simultaneous
update effectively?

2 5 5 4.8791 .72170

Does this SCM Model address the challenge of logical conflict

effectively?

2 5 4 4.6724 .69027

Does this SCM Model address the challenge of tracking of
change requests and defect reports effectively?

3 5 4 4.7729 .70163

Does this SCM Model address the general challenges your firm

faces in its application of SCM?

2 5 4 4.8219 .8461

5.1.6.3 Effectiveness of Proposed Model in Improving SCM Process Application

According to the results presented in Table 19, majority (81.2%) of the respondents reported that the proposed contextualized SCM model is

effective in improving how their firms apply the SCM process. However, 18.8% of the respondents felt that the model had not effectively

improved their application of the SCM process.
This generally shows that the proposed model has positive significant effect on the firms’ application of the SCM process in their software

development projects.

TABLE 19: EFFECTIVENESS OF PROPOSED MODEL IN IMPROVING SCM PROCESS APPLICATION

 FREQUENCY PERCENTAGE

Yes 246 81.2

No 57 18.8

TOTAL 303 100.0

5.1.6.4 Effectiveness of Proposed Model in Comparison to Existing SCM Models

Performing a comparative analysis of the effectiveness of the proposed contextualized SCM model in comparison with the existing SCM

models, the results presented in Table 20 illustrate that none of the statements given (aspects studied) had below average level of

effectiveness. This is illustrated by the mean statistics obtained, with standard deviations which are all above 3.0 and below 1 respectively.
However, of important concern, is that three aspects obtained high mean scores of responses: the check-out/check-in model in the aspect of

simultaneous update with a mean value of 4.8721; the Long Transaction model in the aspect of logical conflict with a mean value of 4.9321

and the change set model in the aspect of tracking of change requests and defect reports with a mean value of 4.8296. These had small
variance from the mean in the responses given as indicated by the minimum and the maximum values obtained. The minimum value for all

the three aspects are all 3 and maximum values of 5.

For the other aspects, the variation was insignificant as the standard deviations are all less than 1. However, some aspects (change set model
and simultaneous update, check-out/check-in model and logical conflict, composition model and logical conflict aspect, composition model

and tracking of change requests and defect reports, and the change set model and the principles of definition of context and designing for

change aspects) indicated a minimum value of 1. This indicated that some respondents felt that these aspects had very low extent of
effectiveness. In addition, the aspects had maximum values of 5 as well.

TABLE 20: EFFECTIVENESS OF PROPOSED MODEL IN COMPARISON TO EXISTING SCM MODELS

QUESTION MIN MAX MODE MEAN STD.

DEV

Contextualized Software Configuration…

www.theijes.com The IJES Page 108

Does the check-out/check-in model effectively address the aspect of

simultaneous update?

3 5 5 4.8721 .67372

Does the composition model effectively address the aspect of
simultaneous update?

3 5 3 3.7240 .82473

Does the long transaction model effectively address the aspect of

simultaneous update?

2 5 4 4.1104 .79129

Does the change set model effectively address the aspect of
simultaneous update?

1 5 3 3.9281 .94138

Does the check-out/check-in model effectively address the aspect of

logical conflict?

1 5 4 4.7149 .76932

Does the composition model effectively address the aspect of logical
conflict?

1 5 4 4.0381 .81203

Does the long transaction model effectively address the aspect of

logical conflict?

3 5 5 4.9321 .47380

Does the change set model effectively address the aspect of logical
conflict?

2 5 3 3.9926 .97729

Does the check-out/check-in model effectively address the aspect of

tracking of change requests and defect reports?

2 5 4 3.9999 .88392

Does the composition model effectively address the aspect of tracking
of change requests and defect reports?

1 5 3 3.5392 .75190

Does the long transaction model effectively address the aspect of

tracking of change requests and defect reports?

2 5 4 4.3018 .91382

Does the change set model effectively address the aspect of tracking of
change requests and defect reports?

3 5 5 4.8296 .52105

Does the check-out/check-in model effectively support the principles

of definition of context and designing for change?

2 5 3 3.3121 .77482

Does the composition model effectively support the principles of
definition of context and designing for change?

1 5 2 3.0018 .85941

Does the long transaction model effectively support the principles of

definition of context and designing for change?

2 5 3 3.9732 .97324

Does the change set model effectively support the principles of
definition of context and designing for change?

1 5 3 3.6937 .69045

5.1.6.5 Levels of Superiority of SCM Models

The findings in Table 21 show that apart from the first aspect in the table, all other aspects of comparison had mean response of values in the

interval 2.0 – 2.9 for disagreement/ low level of superiority. This indicates that the proposed SCM model has superior level of addressing

pertinent SCM issues in small and medium software development firms as indicated by the mean response of 4.9327 for the comparison

between the existing SCM models and the proposed contextualized SCM model in terms of collectively addressing SCM issues in small and

medium software development firms.
The standard deviations are all less than 1 indicating that the responses did not vary significantly from the mean value of the responses and

therefore in a case where different population would have been used, the results would not be much different from the current results. In all

the aspects, the minimum response was 1, with mean response in the range 2.0-2.9 and mode of 2. All the aspects in the table obtained
maximum score of 5.

TABLE 21: LEVELS OF SUPERIORITY OF SCM MODELS

QUESTION MIN MAX MODE MEAN STD.

DEV

Compared to the existing SCM models, is the proposed contextualized
SCM model superior in terms of collectively addressing SCM issues in

small and medium software development firms?

3 5 5 4.9327 .53302

Compared to the proposed contextualized SCM model, is the check-
out/check-in model superior in terms of collectively addressing SCM

issues in small and medium software development firms?

1 5 2 2.7141 .61570

Compared to the proposed contextualized SCM model, is the

composition model superior in terms of collectively addressing SCM

issues in small and medium software development firms?

1 5 2 2.8164 .69122

Compared to the proposed contextualized SCM model, is the long

transaction model superior in terms of collectively addressing SCM
issues in small and medium software development firms?

1 5 2 2.7219 .73138

Compared to the proposed contextualized SCM model, is the change

set model superior in terms of collectively addressing SCM issues in

small and medium software development firms?

1 5 2 2.8719 .56911

5.2 Discussion

5.2.1 Approach Employed to SCM

The first objective of this study was to establish the approach employed by small and medium software firms in relation to SCM. In

establishing the SCM approach employed by small and medium software development firms in Nairobi, Kenya, the study findings revealed
the information as indicated in Figure 6. This indicates that, majority of the small and medium software development firms (80%), employ

one of the existing traditional standard four SCM models. With the numerous challenges identified by this study regarding the existing

traditional standard four SCM models, this study robustly questioned the effectiveness of these models. Interestingly, according to the
findings from this study, overwhelming majority (100%) of the small and medium software development firms were found to be facing

Contextualized Software Configuration…

www.theijes.com The IJES Page 109

challenges in relation to SCM practice, significant majority of which were explicitly identified as challenges of the existing traditional

standard models. The study revealed that majority of the small and medium software development firms do not practice the conventional
and standard phases of software configuration management as shown in Table 9. Only 40% of the respondents indicated that the firms

partially employ conventional and standard phases of software configuration management in software development projects. This is strong

indication that significant majority of the small and medium software development firms in Nairobi, Kenya apply ineffective approaches to
SCM.

5.2.2 Effectiveness of Existing SCM Model Employed

The second objective of this study was to evaluate the effectiveness of the existing SCM model employed in small and medium software firms.

The study findings are indicated in Table 10. The findings illustrate clearly that majority of the software developers and software lead
developers in the small and medium software development firms in Kenya are not knowledgeable about the SCM process, and have low

understanding of the activities and processes involved in the practice.

Majority of the small and medium software development firms employed the practice of SCM in certain circumstances as demonstrated in
Table 11. The firms also practiced SCM only when enough software development time was available to them. Findings strongly reveal that

significant majority of the small and medium software development firms in Nairobi, Kenya do not employ any substantial and effective

approach to software configuration management during software development activities. The study established the practice and interest of
improving SCM process as clearly demonstrated in Table 12 and Table 13. This clearly indicates that the existing SCM models applied in

small and medium software development firms in Kenya are ineffective and hence the much generated interest of 80% of the respondents, in

improving the firms’ approach after the proposed contextualized model was demonstrated to them.

5.2.3 Challenges Encountered

The third objective of this study was to establish the challenges faced by small and medium software firms in SCM practice. On evaluating
the challenges faced by both software developers and software lead developers in the SCM practice, the study found out that, several factors

limited the firms’ ability to apply the SCM process in software development projects. These include SCM being bureaucratic and hence time

consuming to implement; limited skilled manpower to handle SCM; SCM being time-intensive and therefore time consuming; frequently
changing demands from clients hindering application of SCM; SCM is cost intensive and therefore uneconomical to practice; SCM is

labour-intensive and therefore leads to schedule delays; firms find the process of handling the tracking of change requests and defect reports

difficult to manage; firms have challenges when it comes to simultaneous update of changes made by different developers; firms have
challenges of logical conflict whereby when changes are committed, component of the program that has not been modified leads to the

generation of software errors when the software or program is run, and challenges of smoothly managing the various sub-processes involved

when practicing SCM.

5.2.4 Proposed Contextualized SCM Model

The fourth objective of this study was to propose contextualized SCM model that is relevant and beneficial to small and medium software

firms in Kenya and other developing countries. The study results indicated that, the proposed contextualized SCM model meets the SCM
requirements of significant majority of the small and medium software development firms in Kenya in terms of the approach employed;

effectiveness of SCM model; ability to efficiently address the challenges in relation to SCM process; structurally-inherent nature of being
adaptive, contextualizable, relevant and beneficial to the firm in question regardless of the context of operation if adopted and process-oriented

approach qualifying it to be faster to use, less tedious to apply, less bureaucratic to implement and overally easier to understand compared to

the existing traditional standard models.

The study findings indicate that the proposed SCM model is highly applicable in SCM practice as indicated in Figure 7. This is strong

indication of the high capability of the proposed contextualized SCM model to meet the needs and requirements of small and medium software
development firms in Kenya. This also confirms the proposed model’s effective approach and ability to address the numerous challenges faced

by small and medium software development firms in Kenya. In addition, commercialization and customization of the proposed SCM model is

clearly demonstrated in Table 15.This according to the study participants, qualified the model as SCM tool offering precious solution to the
numerous challenges currently faced by such software development firms. Majority of the respondents looked forward to the proposed SCM

model being developed into software tool that can be commercialized and customized to the needs of individual firms.

5.2.5 Effectiveness of Proposed Contextualized SCM Model

The fifth objective of this study was to evaluate the effectiveness of the proposed contextualized SCM model in small and medium software

development firms. The study results indicate that majority of the respondents had high perception towards the proposed SCM model
(47.2%) while 38.6% of the respondents had moderate perception towards the proposed SCM model. This is indication towards the fact that

the proposed SCM model was effective in the sense that majority of the respondents had high level of perception (47.2%) and moderate

level of perception (38.6%) towards its functionalities and application. This enables this particular proposed SCM model to be effective
towards addressing pertinent SCM issues faced by the small and medium software development firms.

The study results as indicated by the mean value in the range of 4.0 – 4.9, indicate that the respondents strongly agreed that the proposed

SCM model effectively addresses pertinent issues of SCM such as the clear definition of processes through the process modeling approach
used; the challenge of simultaneous update; the challenge of logical conflict; the challenge of tracking of change requests and defect reports;

and the general challenges faced by small and medium software development firms in their SCM application. This is explicit indication that

the proposed SCM model is effective as evidenced by the fact that it addresses the pertinent challenges in existing SCM models identified
previously in this study.

Findings from the study indicate that majority (81.2%) of the respondents are of the view that the proposed SCM model is effective in

improving how their firms apply the SCM process. This is significantly positive indication of the effectiveness of the proposed SCM model
in addressing the needs of small and medium software development firms.

The study results shown in Table 20 indicate strong level of agreement by the respondents as shown by mean value range of 4.0 – 4.9. The

proposed SCM model has adopted elements of the check-out/check-in model to address the challenge of simultaneous update. According to
the results in Table 20 pg.64, the check-out/check-in model has mean score of 4.8721 which is higher compared to the composition model

(3.7240), the long transaction model (4.1104) and the change set model (3.9281). This is indication that by adopting elements of the check-

out/check-in model, the proposed SCM model is better placed in addressing the challenge of simultaneous update. The proposed SCM
model in addition, as adopted elements of the long transaction model to address the challenge of logical conflict. Based on the results in

Table 20, the long transaction model has mean score of 4.9321 which is higher as compared to the check-out/check-in model (4.7149), the

composition model (4.0381) and the change set model (3.9926). This is an indication that by adopting elements of the long transaction
model, the proposed SCM model is better placed in addressing the challenge of logical conflict. The proposed model has adopted elements

Contextualized Software Configuration…

www.theijes.com The IJES Page 110

of the change set model to handle the challenge of tracking of change requests and defect reports. The results in Table 20 show that the

change set model has mean score of 4.8296 which is higher as compared to the check-out/check-in model (3.9999), the composition model
(3.5392) and the long transaction model (4.3018). This is indication that by adopting elements of the change set model to handle the

challenge of tracking of change requests and defect reports, the proposed SCM model is better placed in addressing the challenge of tracking

of change requests and defect reports.
The study results in Table 21 show that the proposed contextualized SCM model has higher superiority level as indicated by the mean score

of 4.9327 as compared to other existing SCM models which score: check-out/check-in model (2.7141), composition model (2.8164), long

transaction model (2.7219) and change set model (2.8719). This is explicit indication that the proposed contextualized SCM model is
superior in terms of collectively addressing SCM issues in small and medium software development firms.

VI. CONCLUSIONS

Based on the findings and discussions presented in the preceding sections, this study makes the following conclusion:

Findings reveal that majority of the software developers and lead developers have low level of perception of the SCM practice while only

minority of the software developers and lead developers have high perception of the SCM practice.
SCM being key and paramount composition of quality software engineering practice, this study raises pertinent and important questions

regarding the quality of software developed by majority of the small and medium software development firms in Kenya. SCM is explicitly

neglected by majority of the firms leading to doubts regarding the quality of software produced by these firms.
Small and medium software development firms employ the practice in select and biased circumstances based on the various factors such as

when need arises, when there is availability of software engineers well conversant with SCM, and when the client demands changes to

already developed software. Majority of the small and medium software development firms in Kenya do not apply SCM practice in software
projects raising issues regarding to what extent is the produced software assured of meeting the stipulated global standard quality levels of

software.

There are a number of significant challenges existing in the software industry as regards the application of SCM in the software engineering
discipline. Small and medium software development firms have experienced the impact of these challenges. Firms of these stature especially

in the developing countries are at much more vulnerability level of being adversely and negatively affected by these challenges owing to

reasons such as bureaucratic nature of existing SCM standards and models, time consuming to implement nature of existing standards and
models and limited skilled manpower to handle SCM.

These challenges hinder the adoption and application of SCM practice among such firms which form significant population of the software

development firms in the developing countries.
The proposed contextualized SCM model meets the SCM requirements of significant majority of the small and medium software

development firms in terms of the approach employed, effectiveness, efficiency, structurally-inherent adaptive nature, contextualizable

nature, relevancy and beneficial nature to the firm in question. This is especially significant for the small and medium software development
firms that operate in different policy, regulatory, industry and organizational contexts. The applicability of the models designed for

developed countries is not always relevant to small and medium software development firms in developing countries. The proposed SCM

model approach includes the context into process descriptions, enabling process owners to design own processes for change and switch
processes during execution resulting in adaptive and modular processes.

Studies strongly advocate for the development of research works about new models that are focused towards tailoring and adaptation of
software processes improvements such as SCM in SMEs. This is a result of lack of existing standards suitable for SMEs especially in

software engineering (Pino et al, 2008, Hareton & Terence, 2001 and Johnson & Brodman, 1999). This study consequently as achieved

contextualized SCM model that is relevant and adaptable for use by small and medium software development firms. The proposed model
addresses a number of key challenges identified in this study that are faced by such firms in their application of the SCM process.

By adopting the proposed contextualized SCM model, the concerned firm amicably addresses the challenges of simultaneous update, logical

conflict, tracking of change requests and defect reports and clear definition of SCM processes. This is major contribution that the proposed
SCM model has made with a view and intention of addressing pertinent and key research gaps and challenges identified in the existing four

standard SCM models.

An implication of this proposed contextualized SCM model is the more conventional, standard, accountable, relevant and auditable manner
of applying the SCM process more so in small and medium software development firms. This shall improve significantly the quality of

produced software by such firms in addition to reducing the complexity associated with the existing SCM standards.

There is need to commercialize and customize the proposed SCM model to the specific needs of each of the software development firms in
order for maximum benefits to be derived in relation to SCM practice and general software engineering activities. This qualifies the model

as SCM tool offering precious solution to the numerous challenges currently faced by small and medium software development firms.

The proposed contextualized SCM model is highly understood in its functionalities and application in the SCM process. The proposed
model addresses the challenges faced by small and medium software development firms effectively. Use of this model contributes positively

to the improvement of the SCM process in concerned firms. By adopting elements of the check-out/check-in model, long transaction model

and change set model, the proposed SCM model effectively addresses pertinent SCM issues faced by small and medium software
development firms in their application of the SCM process. Compared to the existing standard four SCM models, the proposed

contextualized SCM model is superior in its execution and operation of the SCM process.

VII. RECOMMENDATIONS

Based on the study findings, recommendations are made to address the various challenges faced by small and medium software development

firms, to ensure that amicable and practical solutions that capture the aspirations of developers and lead developers in practice of SCM are
provided.

7.1 Approach Employed to SCM

This study recommends the adoption of the proposed contextualized SCM model to meet the required SCM standards of practicing SCM in

addition to meeting the particular firm’s context needs. Findings reveal that, majority of the small and medium software development firms

are using ineffective approaches to practicing SCM and this often leads to numerous challenges to the firms in managing the practice. In
addition, due to adoption of ineffective SCM approaches, majority of the firms do not practice SCM altogether as majority perceive it to be

tedious, expensive and time-consuming to such firms’ operations. According to Pino et al (2008), existing standards are not suitable for

small and medium software organizations. In Staples et al (2012), the reasons why such standards are not adopted is explored. This
reinforces the need to have available strategies for process improvement which are tailored to small companies’ characteristics. These

strategies must be aligned with the widely recognized standards (for large firms), in order to enable small companies establish a solid base

for process improvement (Pino et al, 2008). By adopting this proposed contextualized SCM model, the firms shall positively take up the
practice and this shall lead to better quality software being produced.

Contextualized Software Configuration…

www.theijes.com The IJES Page 111

7.2 Effectiveness of Existing SCM Model

This study recommends the development of this proposed model into software tool so that interested firms can adopt and use the model in
software development activities. This ensures that the practice of the SCM process is more effective, since the tool structure is designed

from highly recommended model. This shall facilitate guidance of the implementation of SCM as described in the proposed contextualized

model.

7.3 Challenges Encountered

To address the challenges incurred by majority of small and medium software development firms as evidenced by this study’s findings, this

study recommends that the concerned firms adopt this model in all software development life cycles. The proposed contextualized SCM
model effectively addresses the challenges revealed in this study. By adopting this model, small and medium software development firms

shall overcome most of the challenges faced in SCM practice and the general software engineering process.

7.4 Proposed Contextualized SCM Model

This study recommends the adoption of the proposed contextualized SCM model to ensure that the concerned firms follow the practice in

conventional, standard, accountable, relevant and auditable manner. The proposed SCM model ensures that firms are able to practice the

process in a manner that is relevant to such firms’ environment of operation and in doing so, end up reaping maximum benefits from the
process. Studies such as Hareton and Terence (2001), Johnson and Brodman (1999) and Saiedian & Carr (1997) show that the models from

the Software Engineering Institute or International Standards Organization are difficult for small and medium organizations to apply. This

because of the complexity of their recommendations and the consequential large investment in terms of time and resources. It is thus
important to consider these models as the reference to develop research works about new models related with the tailoring and adaptation of

software processes improvement in SMEs. Below is diagrammatic representation of the proposed contextualized software configuration

management model for small and medium software development firms in Kenya based on the four main structural elements of process
sequence, process abstraction, context definition and solid process.

7.5 Effectiveness of Proposed Contextualized SCM Model

This study recommends the adoption of this proposed contextualized SCM model in small and medium software development firms owing
to its established effectiveness among studied firms. The proposed model has been found out to be easily understood by developers;

effective in addressing pertinent SCM issues and challenges faced by small and medium software development firms; effective in improving

how firms apply the SCM process; effectiveness in adopting elements of the existing standard SCM models to address pertinent SCM
challenges and high superiority as compared to the existing standard SCM models in addressing pertinent SCM issues in small and medium

software development firms.

Contextualized Software Configuration…

www.theijes.com The IJES Page 112

Figure 8: Proposed Contextualized SCM Model for Small and Medium Software Development Firms

VIII. SUGGESTED AREAS FOR FURTHER STUDY

The following areas are suggested for further study.

8.1 Development of Proposed SCM Model to Software Tool

This study suggests further development of the proposed contextualized SCM model into software tool that can become commercialized and
be available for use to firms that are interested in adopting in own SCM practice and general software engineering practice. The architectural

structure of the model can be synthesized into requirements specifications document, algorithm generated and software tool programmed
using conventional programming languages to realize software tool that can be commercialized and adopted to the needs of large populace

of small and medium software development firms in Kenya, and even beyond to similar firms in other developing countries.

8.2 Design of SCM Model for Large Firms

The proposed contextualized SCM model is designed for small and medium software development firms operating in developing countries

including Kenya. This study suggests the design of similar model that employs the same approach for use by large software development
firms operating in developing countries including Kenya.

Contextualized Software Configuration…

www.theijes.com The IJES Page 113

8.3 Design of SCM Model using Object-Oriented Approach

Object-oriented design approach has been globally embraced warmly in the software engineering and information systems industry. With

object-orientation, real world phenomenon can be viewed as objects and the many interactions can be designed into complex yet

understandable system. This study proposed the design of software configuration management model that is applicable to developing
countries including Kenya. The study suggests that similar approach and design can be applied to design object-oriented SCM model

suitable for small and medium software development firms.

8.4 Integration of Proposed Model in Development Studios

This study suggests the integration of the proposed contextualized software configuration management model into development studios to

ensure easy accessibility and use by software engineers during development activities. By integrating the model into development studios,
software engineers are able to identify bugs and loopholes in the model faster consequently developing patches and add-ons to ensure such

shortcomings are addressed leading to improved and more efficient SCM model.

IX. ACKNOWLEDGEMENT

I am delighted to now have the opportunity to express my sincere gratitude and appreciation to all that contributed to the
realization of this paper. I am deeply indebted to Dr. Elisha Ondieki Makori and Mr. Patrick Kinoti for their guidance and stimulating

suggestions and expertise in the field of software engineering. I am thankful for their unequivocal analysis of my paper and for their

valuable time they spent guiding me through my ideas and the great contributions they made to my understanding of my research problem. I
recognize, with gratitude the support, both moral and ideological, from my friend and lecturer, Dr. Joshua Ndiege during the initial stages of

formulating the paper topic. I thank Joseph Makau for providing me with insight into the area of statistics. Finally my thanks go to four

special people. My Dad, Haron Onsomu and Mum, Martha Onsomu for their unwavering moral and financial support, my sister, Janet
Onsomu for the encouragement and my friend, Ruth Ng’endo for the great moral support and encouragement she has given me.

X. REFERENCES

[1]. Aggarwal, H. (2012). Identification of Effective Key Processes in Software Process Improvement Models for SMEs. International

Journal of Research in Engineering &Applied Sciences, 2(2):

[2]. Aiello, R., and Sachs, L. (2010). Configuration Management Best Practices: Practical Methods that work in the Real World, 1st
edition. Addisson-Wesley Professional.

[3]. Alzaga, A., and Martin, J. (2010). A Design Process Model to Support Concurrent Project Development in Networks of SMEs.

Foundation TEKNIKER, Eibar, Spain.
[4]. Anquetil, N., Kulesza, U., Mitschke, R., Moreira, A., Royer, J., Rummler, A., and Sousa, A. (2010). A model-driven traceability

framework for software product lines. New York: Springer-Verlag.

[5]. Balamuralidhar, P., and Prasad, R. (2011). Self-configuration and Optimization for cognitive networked devices. Wireless Personal
Communications: An International Journal, 59(3), Kluwer Academic Publishers.

[6]. Beck, T. (2007). Financing Constraints of SMEs in Developing Countries: Evidence, Determinants and Solutions. World Bank:
Development Research Group.

[7]. Berzisa, S., and Grabis, J. (2011). Combining project requirements and knowledge in configuration of project management information

systems. Profes ’11: Proceedings of the 12th International Conference on product focused software development and process
improvement. ACM.

[8]. Biffl, S., and Schatten, A. (2009). A platform for service-oriented integration of software engineering environments. Proceedings of

the 2009 Conference on New Trends in Software Methodologies, Tools and Techniques. IOS Press.
[9]. Boden, A., Muller, C., and Nett, B. (2011). Conducting a Business Ethnography in Global Software Development Projects of Small

German Enterprises. Information and Software Technology, 53(9), Butterworth-Heinemann.

[10]. Bose, I., Pal, R., and Ye, A. (2008). ERP and SCM systems integration: The case of a valve manufacturer in China. Information and
Management, 45(4). Elsevier Science Publishers.

[11]. Chen, C.Y., and Chen, P.C. (2009). A Holistic approach to managing software change impact. Journal of Systems and Software,

82(12). Elsevier Science Inc.
[12]. Chen, N., Hoi, S., and Xiao, X. (2011). Software process evaluation: A machine learning approach. ASE ’11: Proceedings of the 2011

26th IEEE/ACM International Conference on Automated Software Engineering. IEEE Computer Society.

[13]. Christensen, H.B. (1999). The Ragnarok Architectural Software Configuration Management Model. Proceedings of the 32nd Hawaii
International Conference on System Sciences.

[14]. Clarke, P., O’Connor, R. (2011). An Approach to evaluating Software Process Adaptation. In: Proceedings of the 11th International

Conference on Software Process Improvement and Capability Determination, pp.28-41. Springer-Verlag, Hiedelberg/Berlin,
Germany.

[15]. Crowston, K., Wei, K., Howison, J., and Wiggins, A. (2012). Free/Libre open-source software development: What we know and what

we do not know. Computing Surveys (CSUR), 4(2). ACM.
[16]. Dabbish, L.A., Wagstrom, P.,Sarma,A., and Herbsleb, J.D. (2010). Coordination in innovative design and engineering: observations

from a lunar robotics project. Group ’10: Proceedings of the16th ACM international conference on supporting group work. ACM.

[17]. Dix, A., and Gongora, L. (2011). Externalisation and Design. DESIRE ’11: Proceedings of the second conference on creativity and
innovation in design. ACM.

[18]. Duhan, S., Levy, M., and Powell, P. (2012). Is Strategy in SMEs using Organizational Capabilities: The CPX Framework. United

Kingdom.
[19]. Elmroth, E., Hernandez, F., and Tordsson, J. (2010). Three fundamental dimensions of scientific workflow interoperability: model of

computation, language, and execution environment. Future Generation Computer Systems, 26(2). Elsevier Science Publishers B.V.

[20]. Er, N.P., and Erbas, C. (2010). Aligning software configuration management with governance structures. SDC ’10: Proceedings of the
2010 ICSE Workshop on Software Development Governance, ACM.

[21]. ESA Board for Software Standardization and Control, BSSC. (1995). Guide to Software Configuration Management. ESA

Publications Division. The Netherlands: Noordwijk.
[22]. European Telecommunications Standards Institute. (2011). Small and Medium-sized Enterprises (SMEs) in Standardization;

Understanding and Supporting SME involvement in ICT standardization. Sophia AntipolisCedex- France.

[23]. Feiler, P.H.(2010). Configuration Management models in commercial Environments.Tech Rept. CMU/SEI-91-TR-7,ADA235782,
Software Engineering Institute, Carnegie Mellon University.

Contextualized Software Configuration…

www.theijes.com The IJES Page 114

[24]. Fruhauf, K., and Zeller, A. (1999).Software Configuration Management: State of the Art, State of the Practice.

[25]. Ghobakhloo, M., Sabouri, M.S., Hong, T.S., and Zulkifli, N. (2011). Information Technology Adoption in Small and Medium-Sized
Enterprises; An Appraisal of Two Decades Literature. Interdisciplinary Journal of Research in Business, 1(7), Pp.53-80.

[26]. Gray, D.E. (2004). Doing Research in the Real World. London: Sage Publishers.

[27]. Habra, N., Niyitugabira, E., Lamblin, A., and Renault, A. (2011). Software Process Improvement in Small Organizations using
Gradual Evaluation Schema. University of Namur.

[28]. Hadden, R. (1998). “Key Practices to the CMM: Inappropriate for Small Projects Panel”. In: Proceedings of the Software Engineering

Process Group Conference, Chicago.
[29]. Heer, T., Heller, M., Westfechtel, B., and Worzberger, R. (2010). Tool Support for dynamic development processes. Springer-Verlag.

[30]. Hong, M., Zhang, L., and Fuqing, Y. (2002). A Component-based software configuration management model and its supporting

system. Journal of Computer Science and Technology, 17(4). Institute of Computing Technology.
[31]. Hudson, M., Smart, A., and Bourne, M. (2001). Theory and Practice in SME performance measurement systems. International Journal

of Operations & Product Management, 21(8), pp. 1096-1115.

[32]. Humble, J., and Farley, D. (2010). Continuous Delivery: Reliable Software Releases through Build, Test, and Deployment Automation,
1st edition. Addison-Wesley Professional.

[33]. IEEE Std.610.12 (2002). IEEE Standard Glossary of Software Engineering Terminology, IEEE, Piscataway, NJ.

[34]. ISO/IEC 12207:2008. Systems and Software Engineering – Software Lifecycle Processes.
[35]. Jimenez, M., Vizcaino, A., and Piattini, M. (2010). Improving Distributed Software Development in Small and Medium Enterprises.

The Open Software Engineering Journal, 4, pp.26-37.

[36]. Jones, R., Thomas, P., and Thomas, K. (2010). Quality Management Tools and Techniques: Profiling SME use & Customer
Expectations. The International Journal for Quality and Standards.

[37]. Katchow, R., Weerd, I., Brinkkemper, S., and Rooswinkel, A. (2011). Software Product Manager: A Mechanism to manage Software

Products in Small and Medium ISVs. Utrecht University, The Netherlands.
[38]. Kaur, P., and Singh, H. (2011). A model for versioning control mechanism in component-Based systems. SIGSOFT Software

Engineering Notes, 36(5). ACM.

[39]. Kim, D., and Youn, C. (2010). Traceability Enhancement Technique through the integration of software configuration management
and individual working environment. SSIRI ’10: Proceedings of the 2010 Fourth International Conference on secure software

integration and reliability improvement. IEEE Computer Society.

[40]. Klosterboer, L. (2010). Implementing ITIL Configuration Management, 2nd edition. IBM Press.
[41]. Kogel, M. (2008). Towards Software Configuration Management for Unified Models. CVSM’ 08: Proceedings of the 2008

international workshop on comparison and versioning of software models, ACM.

[42]. Lin, Y.J., and Reiss, S.P. (1995). Configuration Management in terms of modules. Proceedings of the 5th International Workshop on
Software Configuration Management, pp.17-26.

[43]. Loumos, V., Christonakis, G., Mpardis, G., and Tziova, P. (2010). Change Management and Quality of Service through Business

Process Modelling: The N-VIS, a Public Sector Project. ITNG ’10: Proceedings of the 2010 Seventh International Conference on
Information Technology: New Generation. IEEE Computer Society.

[44]. Mader, P., and Gotel, O. (2012). Controversy Corner: Towards automated traceability maintenance. Journal of Systems and Software,
85(10). Elsevier Science Inc.

[45]. Mei, H., Zhang, L., and Yang, F. (2002). A Software Configuration Management Model for Supporting Component-Based Software

Development. Software Engineering Notes, 26(2), 53.
[46]. Micallef, J., and Clemm, G.M. (1996). The Asgard System: Activity-Based Configuration Management. In SCM-6 Workshop, March

1996 (pp.175-187). Berlin, Germany: Springer Verlag LNCS1167.

[47]. Mohan, K., Xu, P., Cao, L., and Ramesh, B. (2008). Improving change management in software development: Integrating traceability
and software configuration management. Decision Support systems, 45(4).

[48]. Mugenda, O.M and Mugenda, A.G. (1999). Research and Methods: Quantitative and Qualitative Approaches. Nairobi: Acts Press.

[49]. Murta, L., Dantas, C., Oliveira, H., Lopes, L., and Werner, C. (2007). An Integrated Software Configuration Management
Infrastructure for UML models. Elsevier, Science of Computer Programming, 65(3).

[50]. Nalbant, S. (2004). An Information System for Streamlining Software Development process. Turk J ElecEngin, 12(2). Retrieved on

July 19, 2012, from journals.tubitak.gov.tr.
[51]. Ochuodho, S.J., and Brown, A.W. (1991). A Process-oriented version and configuration management model for communications

software. SCM ’91: Proceedings of the 3rd international workshop on software configuration management. ACM.

[52]. Ozcelik,Y. (2010). Do business process re-engineering projects payoff? Evidence from the United States. International Journal of
Project Management, 28, pp.7-13.

[53]. Pino, F.J., Garcia, F., and Piattni, M. (2009). Key Processes to start software process improvement in small companies. SAC’ 09:

Proceedings of the 2009 ACM Symposium on Applied Computing, ACM.
[54]. Pino, F.J., Garcia, F. and Piattini, M. (2008). Software Process Improvement in Small and Medium Software Enterprises: A Systematic

Review. Software Qual J (2008), 16:237-261.

[55]. Priedhorsky,R., and Terveen,L.(2011). Wiki grows up: arbitrary data models, access control, and beyond. WikiSym ’11: Proceedings of
the 7th International Symposium on Wikis and Open Collaboration. ACM

[56]. Rivas, L., Perez, M., Mendoza, L., and Griman, A. (2010). Tools Selection Criteria in Software-developing Small and Medium

Enterprises. JCS&T, 10(1).
[57]. Rodriguez, C., Sanchez, M., and Villalobos, J. (2011). Executable model composition: a multilevel approach. SAC ’11: Proceedings of

the 2011 ACM Symposium on Applied Computing. ACM.

[58]. Rosenblum, D.S., and Krishnamurthy, B. (1991). An event-based model of software configuration management. SCM ’91:
Proceedings of the 3rd international workshop on software configuration management. ACM.

[59]. Rubin, J., Chechik, M., and Easterbrook, S.M. (2008). Declarative approach for Model composition. MiSE ’08: Proceedings of the

2008 international workshop on models in software engineering. ACM.
[60]. Ruparelia, N.B. (2010). The history of version control. SIGSOFT Software Engineering Notes, 35(1). ACM.

[61]. Sarma, A., Bortis, G., and Hoek, A. (2007). Towards Supporting Awareness of Indirect Conflicts Across Software Configuration

Management Workspaces. University of California. USA: Irvine.
[62]. Sarma, A., and Hoek, A.V. (2008). Palantir: enhancing configuration management systems with workspace awareness to detect and

resolve emerging conflicts. Long Beach: California State University

[63]. Schimdt, C. (2012). SMEs: Using CSR to Achieve Sustainability. ECOLOGIA.
[64]. Sharon, D., & Bell, R. (2000). Tools that Bind: Creating Integrated Environments. IEEE Software.

Contextualized Software Configuration…

www.theijes.com The IJES Page 115

[65]. Shamsaie, A., and Habibi, J. (2011). Planning updates in multi-application wireless sensor Networks. ISCC ’11: Proceedings of the

2011 IEEE Symposium on Computers and Communications. IEEE Computer Society.
[66]. Shihab, E., Bird, C., and Zimmermann, T. (2012). The Effect of Branching Strategies on Software Quality. Software Analysis and

Intelligence Lab (SAIL). Queens University, Canada.

[67]. Sovran, Y., Power, R., Aguilera, M.K., and Li, J. (2011). Transactional storage for Geo-replicated systems. SOSP ’11: Proceedings of
the Twenty-Third ACM Symposium on Operating Systems principles. ACM.

[68]. Treude, C., and Storey, M.A. (2009). How tagging helps bridge the gap between social and Technical aspects in software

development. Canada: University of Victoria.
[69]. Wang, Y., Yang, J., Zhao, W., & Su, J. (2012). Change impact analysis in service-based Business processes. Service Oriented

Computing and Applications, 6(2).NewYork: Springer-Verlag.

[70]. Weinreich, R., and Buchgeher, G. (2012). Towards supporting the software architecture life cycle. Journal of Systems and Software,
85(3). Elsevier Science Inc.

[71]. Whitgift, D. (2001). Methods and Tools for Software Configuration Management. John Wiley and Sons, UK: Chichester.

[72]. Yahaya, J., Fithri, S., and Deraman, A. (2012). An Enhanced Workflow Reengineering Methodology for SMEs. International Journal
of Digital Information and Wireless Communications, 2(1).

[73]. Zhu, Y., Tang, F., You, I., Lou, L., Guo, M., and Shen, Y. (2011). PPMLT: A Pipeline Based Processing Model of Long Transactions.

AINA ’11: Proceedings of the 2011 IEEE International Conference on Advanced Information Networking and Applications. IEEE
Computer Society.

