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--------------------------------------------------------ABSTRACT----------------------------------------------------------- 

Previous studies on the buckling and postbuckling loads characteristics of thin rectangular plates that are 

subjected to uniaxial uniformly distributed in-plane loads were limited to all edges simply supported (SSSS) 

plate. Those studies were carried out using assumed displacement and stress profiles in the form of double 

trigonometric functions, never minding their inadequacies. Hence, major associated parameters: displacement 

parameter, Wuv, stress coefficient, Wuv
2
 and load factor, Kcx for such plate could not be determined. No study 

has considered the buckling and postbuckling loads characteristics of thin rectangular plate having all the four 

edges clamped (CCCC). This paper obtained the exact displacement and stress profiles of the buckling and 

postbuckling characteristics of thin rectangular CCCC plates by applying the direct integration theory to the 

Kirchhoff’s linear governing differential equation and von Karman’s non–linear governing differential 

compatibility equation respectively. With these exact profiles, the buckling and postbuckling load expression of 

the CCCC plate was obtained by applying work principle to the Von Karman’s non–linear governing differential 

equilibrium equation. Yield/maximum stress of the plate and those major related parameters were determined. 

Results of this present study show that for a CCCC plate material having yield stress of 250MPa, failure would 

occur at 0.0478h postbuckling out of plane deflection, contrary to the presumed critical buckling load.  Hence, 

CCCC accommodates additional load beyond critical buckling load. 
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I. Introduction 
Postbuckling of plates may readily be understood through an analogy to a simple grillage model, as shown in 

Fig. 1. In the grillage model, the continuous plate is replaced by vertical columns and horizontal ties. Under 

loading on the x – edges, the vertical columns will buckle. If they were not connected to the ties, they would 

buckle at the same load and no postbuckling reserve would exist. However, the ties are stretched as the columns 

buckle outward, thus restraining the motion and providing postbuckling reserve. The columns nearer to the 

supported edge are restrained more by the ties than those in the middle. This occurs too in a real plate, as more 

of the longitudinal in-plane compression is carried nearer the edges of the plate than in the center. Thus, the 

grillage model provides a working analogy for both the source of the postbuckling reserve and its most 

important result; i.e., re-distribution of longitudinal stresses. 
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Figure 1.  Post-buckling model of a thin plate under in-plane loads 
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In his context, Chaje [1] defined postbuckling load as the increase in stiffness with increase in deflection 

characteristic of the plate. This represents possible resistance of axial load by plate at excess of the critical load 

subsequent to buckling. Hence, the postbuckling response of thin elastic plates is very important in engineering 

analysis. Therefore, concerted effort to thoroughly studying thin plates postbuckling behaviour becomes 

imminent. 

Postbuckling load analysis of thin plates accounts for the membrane stretching and their corresponding strains 

and stresses, while buckling analysis accounts also for the membrane stretching but do not consider the 

corresponding strains and stresses developed by the stretching. Postbuckling load analysis of plate involves 

nonlinear large-deflection plate bending theory, contrary to buckling load study which is based on classical or 

Kirchhoff’s linear theory of plates. Researchers have not done much on postbuckling behaviour of thin plates as 

its analysis involves nonlinear large-deflection plate theory, which usually reduces to two indeterminate 

nonlinear governing differential equations originally derived by Von Karman in 1910 [2, 3]. These equations are 

written as follows: 

 

 

 
where,  is the stress function, w is deflection function, h is the plate’s thickness and D is flexural rigidity. 

Equation 1 is the ―Compatibility Equation‖. It ensures that in an elastic plate the in-plane and out-of-plane 

displacements are compatible. Equations 2 and 3 are based on equilibrium principles of stress and in-plane loads 

respectively. They are termed ―Equilibrium equations‖ [2, 3]. Equations 1 and 2 are usually called Von 

Karman’s coupled equations. 

The exact solutions of these equations have been a rigor from the conceptual time to the recent time, in 

which the coupled solutions would give the buckling/postbuckling load of plates from which the true failure 

load is determined. This exact solutions of these equation is imminent, as the critical load predicted by buckling 

analysis is adjudged unsatisfactory [1, 4]. 

Despite these revelations, very few researchers have made effort to solving these coupled equations to 

obtain the expressions for the buckling/postbuckling load as well as the actual failure load of thin rectangular 

plates under compression. Researchers such as: Von Karmanet. al [5], Marguerre [6], Levy [7], Timoshenko and 

Woinowsky – Krieger [8], Volmir [9], Iyengar [10], Ventsel and Krauthammer [11], Chai [12]; and Yoo and 

Lee [1] have tried to solve these equations to obtain the buckling/postbuckling load as well as the actual failure 

load of thin rectangular plates under uniaxial compression. They tried to solve the problem by assuming double 

trigonometric solutions for deflection,  and stress,  functions to solve the governing differential equations of 

thin rectangular plates. In which case, the buckling/postbuckling load as well as the actual failure load of thin 

rectangular plates under compression they obtained would also be said to be assumed, as the solutions of the 

governing differential equations of the plate (deflection and stress functions) were assumed abinitio. No 

researcher has bothered to solve for these parameters by the direct solution of these coupled governing 

differential equations. 

In addition, these researchers restricted themselves to the use of either direct variational or indirect 

variational energy methods to finally evaluate the buckling/postbuckling load of this simply supported edges 
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thin rectangular plate. None of the researchers considered applying direct work principle to finally evaluate the 

buckling/postbuckling loads of the CCCC plate or any other plate. 

 

Von Karman evaluated the final buckling/postbuckling loads characteristics of SSSS plate by solving 

the equilibrium equation 3, after assuming trigonometric functions for deflection and stress. Marguerre [6], 

Timoshenko and Woinowsky – Krieger [8] and Volmir [9] also assumed doubled trigonometric functions of 

deflection and stress; and employed the principle of minimum potential energy, rather than the equilibrium 

equation to furnish the final solution for the same SSSS plate. Iyengar [10], Ventsel and Krauthammer [11] and 

Yoo and Lee [13] also assumed doubled trigonometric functions of deflection and stress used Galerkin’s energy 

methods to obtain the final buckling/postbuckling load of SSSS plate. 

Researchers in later years very often assumed doubled trigonometric functions of deflection and stress 

and used a similar type of approach, i.e., combining an exact solution of the compatibility equation with either 

evaluation and minimization of the potential energy, or an approximate solution (for example, using Galerkin’s 

method, Ritz method or Rayleigh-Ritz method) of the equilibrium equation. 

In all these, none of these researchers obtained the displacement parameter, Wuv, stress coefficient, Wuv
2
 

and load factor, Kcx associated with CCCC plate buckling and postbuckling characteristics, or any other plate. 

This situation has been the bane of comprehensive solution of the buckling/postbuckling characteristics of 

plates, as the actual yield/maximum stress of the plate could not be obtained, which this paper addressed. 

 

II. The Direct Integration Approach for Exact General Deflection and Stress Profile for 

Buckling and Postbuckling of CCCC Plate 
Oguaghamba [14] used direct integral calculus approach and evaluated equation 3 to obtain the exact general 

displacement function of a buckled plate. The deflection function, W in its non – dimensional coordinates: R 

and Q is given as:  

 
wherenon – dimensional coordinates:R and Q in equation 4 relates to the usual independent coordinates x and y 

by the relation: 

 

arecoefficients to be determined. 

 
Solving equation 1 by direct integral calculus approach, the stress distribution of the plate prior to buckling to 

obtain the exact general stress function,  of buckling and postbuckling load of plate is obtained [14]. The 

expression in non-dimensional coordinates,  is given as: 
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coefficients in equation 4 and  were determined by Oguaghamba [14] using the Benthem’s boundary 

conditions of CCCC plate as follows: 

;   

Hence, the CCCC plate displacement and stress profiles in buckling and postbuckling regimes are obtained by 

substituting these coefficients into equations 4 and 7 as: 

 

 
where,  

 

 

 

 
where, 

 
 Stress function coefficient for a plate in postbuckling regime 

 Consolidated coefficient factor of stress in postbuckling regime 

 Non-dimensional stress shape (profile) function of the slightly bent plate, given as: 

 

 
Expressions for the deflection and stress functions factors,  of the plate behaviour under pre – 

buckling, buckling and post buckling regimes deduced by Oguaghamba [14] is given as: 

 
 

III. Work Principle Application for Buckling and Postbuckling Load and Stress of CCCC Plate 
Oguaghamba [14] applied the work principle according to Ibearugbulemet al. [15, 16] to equation 2 in non – 

dimensional coefficient and obtained the exact general buckling and postbuckling load, Ncx (R, Q) of thin 

rectangular plates in non – dimensional coordinates as in equation 15. 
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where the first and the second terms account for critical buckling load of the plate and the gain in load of the 

plate at postbuckling regime respectively.  

Substituting the expressions of  and  into equation 15; solving out the resulting integrand 

expressions gave the buckling and postbuckling load expression for a CCCC thin rectangular plate as: 

 
Introducing the expression of  given in equation 14 into equation 16; the buckling and postbuckling load 

expression for a CCCC thin rectangular plate reduced to: 

 

 

 
where,  is the buckling and postbuckling load coefficient. 

Oguaghamba [14] also evaluated the inplane and bending buckling and postbuckling yield stress developed by 

the CCCC as: 

 

 
 

IV. Results and Discussions 
Fig. 2 shows a CCCC thin rectangular plate subjected to uniaxial compression loads on the R - edges. The 

interest is to evaluate the buckling and postbuckling load of the plate. 
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Figure 2: CCCC – Thin Rectangular Plate under Uniaxial Load 
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Iyengar [10]; Ventsel and Krauthammer [11]; Szilard [4]; and Yoo and Lee [13] in their separate works obtained 

the buckling and postbuckling load of SSSS – thin rectangular plate only as: 

 
The stress function coefficient,  in the present study is well defined in equation 14 for CCCC plate. 

This is not the case for the stress function coefficient,  in the literature formulation for SSSS plate, as given 

in equation 21; while that for CCCC plate has not been studied. Hence, the stress function coefficient,  in 

the literature formulation has no empirical interpretation. This leaves the literature formulation as a mere 

theoretical exercise rather than real life adventure. The present study clearly defined these parameters: the 

displacement parameter, , stress coefficient,  and load factor, . With this parameters, the present 

study obtained critical yield stress of the CCCC plate under buckling and postbuckling loads as given in 

equation 20. Therefore, equations 19 and 20 can be used to obtain the actual value of the buckling and 

postbuckling load and critical yield stress of an SSSS plate, knowing other parameters: deflection coefficient, ; 

Poisson ration, μ; breadth, b; aspect ratio, p and thickness, h of the plate. 

For instance, an ASTM grade A36 thin rectangular steel plate possessing CCCC edge conditions; 

subjected to uniformly distributed in-plane load on its R – edge, b and having the following physical and 

geometric properties as: breadth, b = 4000mm; thickness of plate, h = 20mm; yield load, σys = 250 MPa; 

Ultimate Stress, σu = 400 – 550 MPa; Poisson’s ratio, μ = 0.30; Modulus of elasticity, E = 200 GPa; density of 

plate, ρ = 7,800 kg/m
3
. The buckling and postbuckling load coefficient and critical yield stress of the plate 

through unit aspect ratio and deflection coefficients range:  are shown in Fig. 3 and Fig. 4 

respectively. 

 
 

In Fig. 3, the graph shows that the buckling and postbuckling load parameter,  increases quadratically 

as the out of plane deflection factor,  increases. The buckling and postbuckling load parameters,  are higher 

at other aspect ratios lower than 1.0. Thus, the behaviour of buckling and postbuckling load parameter which is 

a function of the buckling and postbuckling load  means that the buckling and postbuckling load would continue 

to increase as the out of plane deflection increases. This is contrary to the literature’s hypothesis that the axial 

stiffness reduces, as the plate as a whole sustains increase in load after buckling or deflection [14]. 

However, this hypothesis is clarified in Fig. 4. The linear relationship in the yield stress behaviour 

against out of plane deflection explained that the plate would resist extra in-plane load after buckling, while 

reduces in material stiffness. That is, the plate resists further in-plane load due to postbuckling reserve but loses 

stiffness due to in-plane bending stress developed. Where the in-plane load bending stress is not considered, the 

plate would behave as if it had higher yield stress, which it does not. Fig. 4 also show that for a CCCC plate 

material having yield stress of 250MPa, failure of such plate under in-plane loading would not occur at critical 
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buckling stress. For instance, at zero deformation, the yield stress of the plate reaches 247MPa, which is close to 

the yield stress of the plate’s material. Extra 3MPa stress of applied load on the plate would thereafter lead to 

collapse of the plate. 

 

V. Conclusion 
Whereas the previous study did not analysed the buckling and postbuckling load characteristics of CCCC plate, 

this paper analysed the buckling and postbuckling load characteristics of CCCC plate. Whereas the double 

trigonometric functions have been adjudged inadequate for the analysis of thin plates’ postbuckling load 

characteristics, this study obtained exact displacement and stress profiles of buckling and postbuckling load 

characteristics of CCCC plate by direct integration of the governing differential equations of the plate and 

implored the work principle technique to finally evaluating the buckling and postbuckling load of CCCC plate. 

In addition to the buckling and postbuckling load and yield stress obtained for CCCC plate, the study obtained 

other parameters of the CCCC plate under buckling and postbuckling regimes such as: displacement parameter, 

Wuv, stress coefficient, Wuv
2
 and load factor, Kcx. With all these, the study explained stiffness loss behaviour of 

plate in postbuckling regime. Thus, the study found out that CCCC plate would accommodate more loads 

beyond the critical buckling load, prior to actual material failure in its postbuckling regime. For CCCC plate’s of 

higher yield stress, failure would be due to geometric orpermissible deflection criteria. The study also revealed 

that plate deforms along the transverse direction, leading to the stretching of the longitudinal fibers of the plate, 

when uniaxially loaded. In this way, the longitudinal fibers of the plate would undergo stress redistribution, as 

well as develop transverse tensile stresses. These tensile stresses provide the postbuckling reserve load. 
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