

## A new method for the construction of Partially balanced n-ary block design

### B. Srinivas, N.Ch. Bhatra Charyulu

Department of Statistics, University College of Science, Osmania University, Hyderabad-7

| ABSTRACT                                                                                                       |
|----------------------------------------------------------------------------------------------------------------|
| The concept of partially balanced n-ary block (PBnB) designs was first introduced by Mehata, Agarwal and       |
| Nigam (1975) as generalization of balanced n-ary block (BIB) designs. In this paper an attempt is made to      |
| propose a new method for the construction of partially balanced n-ary block designs using balanced n-ary block |
| designs. The method is also illustrated with a suitable example.                                               |
| Key words: Balanced n-ary Block Design; Partially Balanced n-ary block design.                                 |
| Date of Submission: 31 October 2015 Date of Accepted: 13 November 2015                                         |

#### I. INTRODUCTION

Incomplete block designs were introduced to eliminate heterogeneity to a greater extent than is possible with randomized blocks and Latin squares when the number of treatments is large. The arrangement of 'v' treatments in 'b' blocks, each of sizes  $k_1, k_2, \ldots$ ,  $k_b$ , each of the treatment appears  $r_1, r_2, \ldots, r_v$  blocks such that some pairs of treatments occur in  $\lambda_1$  blocks, some pairs of treatments occur in  $\lambda_2$  blocks , soon some rest of pairs of treatments occur in  $\lambda_m$  blocks the design is said to be a "General Incomplete Block Design". The total number of treatments are  $\Sigma r_i = \Sigma k_j$ , where  $i=1, 2, \ldots, v$ ; and  $j=1, 2, \ldots, b$ . If each treatment occurs at most once in blocks then the design is binary and if it occurs at most (n-1) times the design is said to be n-ary design. Balanced n-ary block designs were introduced by Tocher (1952) as generalization of balanced incomplete block binary designs by allowing a treatment to occur more than once in a block.

DEFINITION 1.1: A balanced n-ary block design (BnBD) is one whose incidence matrix  $N_{BxV}$  has  $n_{ij}$  (j = 1,2, ..., B, i= 1,2,...,V), as elements where  $n_{ij}$  takes any one of the n-distinct values 0, 1, ..., n-1 and the variance of the comparison between any two treatment is the same.

For such a design, V treatments are arranged in B blocks each of size K such that every treatment is replicated R times and the sum of products  $n_{ij}n_{ij}$ , is constant ( $\Sigma n_{ij}n_{ij} = \pi$  say). The quantities V,B, R, K, and  $\pi$  are called the parameters of the balanced n-ary block 'design.

DEFINITION 1.2: A block design with V treatments, B blocks is said to be partially balanced n-ary block design with p- associate classes if

- (i) The incidence matrix  $N_{BxV}$  has n entries 0,1,2, ...n-1
- (ii) The row sum  $N_{BxV}$  is K
- (iii) The column sum of  $N_{BxV}$  is R and the column sum of squares is  $\delta$
- (iv) The inner product of any two columns of  $N_{BxV}$  is  $\pi_{\alpha}$ , if  $\theta$  and  $\phi$  are mutually  $\alpha^{th}$  associates  $\alpha=1, 2, ..., p$
- (v) There exists a relationship between the treatments defined as
  - (a) Any two treatments are either 1<sup>st</sup>, 2<sup>nd</sup>, or p<sup>th</sup> associate being symmetrical,

(b) Each treatment  $\theta$  has  $n_{\alpha}$ -  $\alpha$  associates. If  $\theta$  and  $\phi$  are  $\alpha^{th}$  associates the number of treatments that are j<sup>th</sup> associates of  $\theta$  and k<sup>th</sup> associates of  $\phi$  is  $p_{ik}$ 

In particular, in the incidence matrix  $N_{BxV}$ , elements  $n_{ij}$  takes three values 0,1,2 the design corresponding to the incidence matrix is called 'partially balanced ternary design (PBTD)' and.  $n_{ij}$  takes four values 0,1,2,3 the corresponding design is called 'partially balaced quarternary design (PBQD)'. In this paper an attempt is made propose a new method of constructions of partially balanced n-ary block design.

# II. METHOD OF CONSTRUCTION OF PARTIALLY BALANCED N-ARY BLOCK DESIGN

Theorem 2.1 : If  $N_{VxB}$  is the incidence matrix of Balanced Ternary Design with parameters V,

B, R, K and  $\pi$  AND where J is matrix of unities, then  $N * = \begin{bmatrix} N & J \\ J & N \end{bmatrix}$  is the incidence matrix of Partially Balanced Ternary Design with parameters V'=2V, B'=2B, R'=R+B, K'=V+K and  $\pi_1=2R$ .

The method is illustrated in the example 2.1

EXAMPLE 2.1: Consider a BTD with V = 4, B = 12, K = 4, R = 12,  $\pi$ =10 with incidence matrix N.

| where |                       | [1 | 1 | 0 | 2 | 1 | 1 | 2 | 0 | 1 | 1 | 2 | 0 ] |
|-------|-----------------------|----|---|---|---|---|---|---|---|---|---|---|-----|
|       | N ′ _                 | 1  | 1 | 2 | 0 | 2 | 0 | 1 | 1 | 2 | 0 | 1 | 1   |
|       | $I\mathbf{v}_{VXB} =$ | 2  | 0 | 1 | 1 | 1 | 1 | 0 | 2 | 0 | 2 | 1 | 1   |
|       |                       | 0  | 2 | 1 | 1 | 0 | 2 | 1 | 1 | 1 | 1 | 0 | 2   |

The resulting incidence matrix of PBTD with V'=8, B'=24, R'=24, K'=8,  $\pi_1$ =22and  $\pi_2$ =24 is

| N* <sub>E</sub> | 3'xV' | - = |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |    |
|-----------------|-------|-----|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|----|
| [1              | 1     | 0   | 2 | 1 | 1 | 2 | 0 | 1 | 1 | 2 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1] |
| 1               | 1     | 2   | 0 | 2 | 0 | 1 | 1 | 2 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  |
| 2               | 0     | 1   | 1 | 1 | 1 | 0 | 2 | 0 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  |
| 0               | 2     | 1   | 1 | 0 | 2 | 1 | 1 | 1 | 1 | 0 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  |
| 1               | 1     | 1   | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 2 | 1 | 1 | 2 | 0 | 1 | 1 | 2 | 0  |
|                 | 1     | 1   | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 0 | 2 | 0 | 1 | 1 | 2 | 0 | 1 | 1  |
| 1               | 1     | 1   | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 0 | 1 | 1 | 1 | 1 | 0 | 2 | 0 | 2 | 1 | 1  |
| 1               | 1     | 1   | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 2 | 1 | 1 | 0 | 2 | 1 | 1 | 1 | 1 | 0 | 2  |

Acknowledgements: The authors grateful to the UGC for providing fellowship under BSR-RFMS (JRF).

#### **REFERENCES**:

- Bhagwandas and Singh Meitei, K.K. (1990): Some constructions of partially balanced ternary designs, Cal. Stat. Assoc. Bulletin, Cal. Stat. Assoc. Bulletin, Vol. 39, No. 153-154, PP 111-115.
- [2] Bhatra Charyulu N.Ch. (2009): Construction of Partially Balanced Ternary Designs, Applied Science Periodical, Vol. 11(4), pp 287-291.
- [3] Mehta, S.K., Agarwal, S.K. and Nigam (1975) : On partially balanced incomplete block designs through partially balanced ternary designs, Sankhya-B, Vol. 35, PP 211-219.
- [4] Tocher, K.D. (1952): The design and analysis of block experiments, Jour. Roy. Stat. Soc. –B, vol. 14, PP 45-100.