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-----------------------------------------------------------ABSTRACT---------------------------------------------------------- 

This paper will focus on numerical analysis and the behavior of wave function in Bose-Einstein condensation 

(BEC) controlled by (1+1) external trapping potentials which are usually used in experiments that lead to 

produced BEC in ultra cold gases. Two mixed types of trapping potentials are used in this analysis. The first one 

is a harmonic oscillator potential (HOP) assume to be applied parrale to the propagation axis, and the second 

is optical lattice potential OLP assume to be applied normal to the propagation axis.  The cases of slowly and 

rapidly varying in anisotropy term for HOP are considered. Although these numerical analyses give us the 

overall view of the region of confinement that the external trapping potentials have employed but also shows 

that the anisotropy term in the mathematical formula of  HOP play a major part in term of values and shape of 

the wave function of condensation in a confinement region. The nonlinearity term in this analysis is kept 

constant, while the time interval is of order of 0.0002, with space step is of order of 0.0025.  Both the accuracy 

and the stability of this solution are remarkable. 
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I. INTRODUCTION 
A simplest example for the realization of Bose-Einstein Condensation (BEC) is an ideal gas which is 

consisting of non-interaction Bose particles.  This system consider as a fictitious system since every realistic 

Bose gas shows some level of particle-particle interaction.  This simple model, first studied theoretically by A. 

Einstein [1], correctly describes important basic properties of actual non-ideal (interacting) Bose gas.  Bose-

Einstein condensation then has become a widely studied research topic among physicists and applied 

mathematicians since its first experimental realization of (BEC) in ultra cold atomic gases by a sequence of 

experiments in 1995 by Anderson et al. (vapor of rubidium) [2], and Davis et al. (vapor of sodium) [3],  In these 

experiments the atoms were confined in magnetic traps and cooled down to low temperatures at an order of 

Micro-kelvins.  For the detail discussions see also [4-6].  After the recognition of Bose-Einstein condensates in 

dilute quantum gases a great deal of attention to the dynamics of nonlinear excitations in matter waves, such as 

dark [7,8] and bright solitons [9], vortices [10-15], super-vortices [16], was strained. In this paper, we solve 

numerically the Gross-Pitaevskii equation and then analyze the effect anisotropy of the gas on wave function in 

Bose-Einstein condensation which is controlled by (1+1) dimensions harmonic oscillator potential propagates 

along x-axis plus optical lattice potential propagates along the y-axis.  

 

II. THEORY 

Bose-Einstein condensate, composed of Bosonic atoms all in the same quantum state, behaves very 

much like a classical electromagnetic field obeying Maxwell’s equations arises as an assembly of photons all in 

the same quantum state.  The equation of motion of the Bosonic atoms  is the Gross-Pitaevskii equation  

                                                                              (1) 

It is worth to mention that, there are phenomena in which the quantized nature of this field is important—for 

example, when two Bose-Einstein condensates collide at a sufficiently high velocity, a halo of elastically 

scattered atoms is produced [17,18]. This phenomenon is a direct effect of the fact that the quantized field 

consists of interacting particles. Unfortunately the Gross-Pitaevskii equation with initial conditions 

corresponding to two Bose-Einstein condensates does not predict this scattering.  To treat this phenomenon 

theoretically we have two choices. In the first, the Gross-Pitaevskii equations for the two condensate wave 

packets are modified (either phenomenologically [19], or on the basis of a method of approximating quantum 
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field theory [20]) to give an elastic scattering loss term. While these methods yield equations of motion which 

allow for depletion of the condensate wave functions, they do not include a description of the scattered atoms, 

and hence cannot describe the effects of bosonically stimulated loss. In the second class of treatments [21] the 

quantum field theory is linearized about the condensate, yielding equations of motion linear in the fluctuation 

operators. This method shows that the process is essentially one of four-wave mixing between the two 

condensate fields and pairs of quantized fluctuations—however, as a linearized theory; it can deal only with 

perturbatively small amounts of scattering and cannot simultaneously account for depletion of the condensate. 

Both of these formalisms are valid only in the limit of weak scattering, but fail for large scattered fractions.  

Moreover the phenomenon of super-fluidity requires that there be interactions between the particles.. Super-

fluidity can be defined in a number of ways, but perhaps the most powerful is the connection of super-fluidity 

with the presence of an order parameter or macroscopic wave function which describes all the super-fluid 

particles. As in any scalar field of complex numbers, a macroscopic wave function ψ(r) contains precisely two 

degrees of freedom at each point in space, which may be interpreted in terms of the local super-fluid density n(r) 

and the local super-fluid phase φ(r), that is, 

                                                                                                                                   (2)  

 Since the global phase of a wave function is not measurable and plays no physical role, it is only the variation 

in space of the super-fluid phase that is of physical significance.  To make this clear, we point out that for the 

simple situation of a de Broglie matter wave of a free particle of mass m with wave vector k, the wave function 

is simply a plane wave proportional to exp(ik.r). In this case it is the gradient of the quantum mechanical phase 

multiplied by  which leads to the particle's velocity, that is, . We define the super-fluid velocity in 

analogous manner from the gradient in the phase of the macroscopic wave function .  In order to 

solve equation (1) numerically along the X-Axis one can rewrite it in more convenient form [22-24]. 

                                                                            (3) 

The Crank-Nicolson Scheme for equation (3) is: 

                     (4) 

Where k is the time interval and h is the space step. This scheme is unconditionally stable, time reversible, 

conserve the total particle number but it is not time transverse-invariant.   A compares tests with fully implicit 

and fully explicit finite difference methods are carried out but not include in this paper.   Reader can refer to 

references [25], and [26] for a mathematical analysis of finite differences methods for Schrodinger equations in 

semi-classical regimes.  In this work, we will analysis the wave function under the action of a typical optical 

lattice trapping potentials which are widely used in current experiments , where 

 is the angular frequency of the laser beam, with wavelength  λx, that creates the stationary 2D 

periodic lattice, Eτ=(ℏ2
)/2m is the recoil energy, and Sx is a dimensionless parameter characterizing the 

intensity of the laser beam. The optical lattice potential has periodicity Tx=π/  =λx /2 along the x-axis. The 

choices for the scaling parameters t0 and x0, the dimensionless potential V (x), the energy unit 

, and the interaction parameter  for external optical lattice trapping 

potentials are reads as follow: , , , . 

III. RESULT AND DISCUSSION 

It is worth to imagine that the atoms are tightly confined in two directions and can be successfully 

describe the wave function by one-dimension by Appling optical Lattice potentials over lapping the harmonic 

potential along the x-axia.  The time interval used in this solution is 0.00020 and the space step is 0.002500 

more over the non linearity term (G) is fixed initially to the value 12.5484.  The most factors which affect this 

numerical solution are the stability since a constant amplification in one time step turns into an exponential 

amplification over time. In addition to this classical stability requirement, we would also like that the norm of 

the system is unchanged.  In the present case this corresponds to conservation of the particle number and that the 

energy is unchanged. These considerations from the physical properties of the system some time do not fulfill 

the norm and energy preservation properties.  The careful adjustments between the time interval and space step 

will reflect that the physical properties of this system is satisfied and the result of this numerical solution can be 

explained satisfactory.    
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The contour level of optical lattice potential over lapping harmonic oscillators for anisotropy value 

equal to 0.5 is shown in figure (1a).  One can conclude from this figure that the potential takes the form of 

elliptical shape with zero potential at a centre of the distribution, the maximum potential localized at the edge of 

the working area as expected.  The corresponding contour level of the wave function for the same value of 

anisotropy is shown in figure (1b).  The maximum value of wave function is at the centre of the propagation 

field, and the distribution of the wave function is in harmony with the applied external trapping potentials.  As 

the anisotropy of the working gas increases to 1.0 the distribution of the trapping potential change its shape from 

elliptical like shape to a circular shape as shown in figure (2a) this means that the two trapping potential exerts 

an equal forces on the condensation and the wave function of this condensation follow same circular 

distribution. Again the force applied at the centre of condensation due to the effects of external trapping 

potentials is zero and at the edge of the working field are maximum.  The corresponding wave function has its 

maximum at the centre as seen in figure (2b).   The concentric circles around the center of the propagations field 

in this figure are equi-potentials lines of constant potential energy. The radial lines are lines of steepest descent 

that depict the gradient of the potential energy surface. The slope of a radial line at any point on the plane is 

proportional to the force that a particle would experience there.   Figures (3a) and (3b) shows the contour levels 

of the potential and the corresponding wave function of the condensation for the anisotropy value of 1.5.  It is 

clear from this figure that the force exerts by the harmonic trapping potential along the X-axis is much higher 

than the force exert by the optical lattice potential along the Y-axis, however the result of this differences of 

force that the concentrated circles for both the potentials and the wave function are pulled down toward the X-

Axis. Finally in order to understand the bahaviour of the energy, chemical potentials and wave function with the 

anisotropy one can look to figures (4), and figure (5).  There are almost linear relationships between the energy, 

chemical potential from one side with the anisotropy on the other side, this linearity become more clear at higher 

values of anisotropy.  This picture is not applied to the wave function where the exponential increases of the 

wave function with the anisotropy is clearer than the expected from this solution.  This result make one much 

confidence a bout the stability and the accuracy of our numerical solution that employed in this analysis.  

IV. CONCLUSION 

Although the theories which describe the the wave function under the action of harmonic oscillator and optical 

lattice potential are working very well to some extent, but this result shows that care must be taken in to account 

in order to explain the experimental results more accurately.  The limitation of different factor in theory need 

more study in parallel with the available of experimental data.  The numerical solution for this study satisfied 

the stability and accuracy condition, this means we can extend our analysis to much more complicated cases in 

the next future. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure (1a) The Contour Levels of the (1+1) 

Trapping Potentials G = 12.5484, anisotropy = 0.5 
 Figure (1b) The Contour Levels of the Wave 

Function G = 12.5484, anisotropy = 05 
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Figure (3a) The Contour Levels of the (1+1) 

Trapping Potentials G = 12.5484, anisotropy = 1.5 

 

 Figure (3b) The Contour Levels of the Wave 

Function G = 12.5484, anisotropy = 1.5 

 
Figure (2a) The Contour Levels of the (1+1) 

Trapping Potentials G = 12.5484, anisotropy = 01 

 

Figure (2b) The Contour Levels of the Wave 

Function G = 12.5484, anisotropy = 01 

 

Figure (4) Chemical potential and Energy VS 

Anisotropy 

 

 
Figure (5) The Wave Function VS Anisotropy 
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