Natural radiation levels and health hazard indices of soil in Owerri Nigeria

1Nwaka, B.U., 1Emelue H.U. and 1Nwokocha C
1Department of Physics, Alvan Ikoku Federal College of Education, P.M.B. 1053 Owerri, Imo State Nigeria

abstract

The natural radiation of soil samples from three local governments areas that make up Owerri city in Imo state, Nigeria were measured using NaI(Tl) gamma ray spectrometer. The mean values obtained were 167.2 ± 10.5 (Bq Kg⁻¹), 19.7 ± 1.9 (Bq Kg⁻¹) and 18.1 ± 3.3 (Bq Kg⁻¹) for ⁴⁰K, ²²⁶Ra and ²³²Th respectively. These values were used to evaluate the radiological health hazard indices using standard analytical methods. The results showed that the mean value of radium equivalent activity is 58.5 Bq Kg⁻¹, while the values of absorbed dose rate (D) and annual effective dose equivalent (E) are 27.1 mGy h⁻¹ and 132.78 mSv y⁻¹ respectively. The values of external and internal health hazard indices are 0.16 and 0.21 respectively. All these values obtained are lower than their world permissible United Nations Scientific Committee on the Effect of Atomic Radiation (UNSCEAR) values for such environment. This shows that the risk due to radiation contamination in the city of Owerri is low.

Keywords: Activity concentration, gamma ray spectrometer, health hazard indices, Owerri, world standard values.

Date of Submission: 30 October 2014 Date of Accepted: 20 December 2014

I. INTRODUCTION

The human body is continuously exposed to ionizing radiation both from natural and artificial sources [1]. The gamma radiation emitted from naturally occurring radionuclides materials NORMs is called terrestrial background radiation. Materials such as rock, soil, underground water and air contain various NORMs in different concentrations in various locations of the world. Terrestrial background radiation produced during interaction of cosmic rays with the atmosphere is the major natural sources of radiation due to ⁴⁰K, ²³⁸U, ²³²Th and their decay products. There are also artificial sources of radiation such as ¹³⁷Cs, ⁴⁰⁳C, ⁹⁰Sr, which are released due to human activities. The measurement of radionuclide concentrations in the environment is essential to the assessment of possible radiological risk to human [2]. This is because, exposure of humans to natural radiation is through inhalation of radon (²²⁴Rn) gases, ingestion of food and direct external exposure [3]. Some radiological indices such as radium equivalent activity, absorbed dose rate, annual effective dose rate, external and internal hazard indices also depend on the activity concentrations of ⁴⁰K, ²²⁶Ra and ²³²Th. These values of radiological indices for different materials greater than the world average could contribute significantly to health risk [4].

Imo State is one of the thirty six (36) states of Nigeria. It has been the capital of the State since 1967 and it has grown from a small town to become one of the commercial hubs of the Southeastern Nigeria. It is also a gateway city from the Southwestern Nigeria to most of the Southeastern part of the country. As a result of this, there has been a great increase in commercial activities and human settlement over the years. These could bring about an increase in nuclear applications and its attendant risk of abuse or accident [6]. It is important therefore to measure the levels of nuclear applications present in the environment at any given time in order to adequately assess the risk involved to the society.

[6, 7] have done some studies in major cities in Nigeria, but none looked at the radiological hazard indices of Owerri city with the view to accurately ascertain the health risk to the area. The aim of the study therefore is to determine

i The activity concentration of the three radionuclides of ⁴⁰K, ²²⁶Ra and ²³²Th
ii The radiological health hazard implications to the public.
iii And also to provide a radiometric data for further reference and research in the area.
II. MATERIALS AND METHOD

2.1 Sample collection

Soil samples were collected from 30 different locations in the three local government areas that make up the city of Owerri in Imo state. The local government areas are Owerri Municipal area (OWM), Owerri North (OWN) and Owerri West (OWW). This is to ensure a very good coverage of the entire region. Samples at each site were collected to a depth of about 150 mm to 200 mm below the soil surface. The samples were placed in a labeled waterproof nylon bag and transferred to the laboratory for analysis. Then they were air – dried and homogenized to pass 1mm mesh sieve. About 0.2kg of each sample were weighed and fed into a plastic container of about 8cm in height and 7cm in diameter. The samples were placed symmetrically on top of the detector and measured for 10 hours (36000 seconds). The net area under the corresponding photopeaks in the energy spectrum was computed by subtracting count due to Compton scattering of the background source from the total area of the photopeaks. The radionuclides were computed using the algorithm of the multichannel analyzer (MCA).

The measuring instrument used in this research is the gamma ray spectrometer of NaI(Tl) detector of dimension 7.6cm by 7.6cm housed in a 6cm thick lead shield to minimize background radiation. The choice of the detector was due to its modest resolution. The detector was coupled to a Multichannel Analyzer (MCA) through a photomultiplier tube, which converts the visible light photons produced in the crystal into amplified electrical pulses, and an amplifier. The gamma spectrometry detector was calibrated before it was used for analysis. This was done to ensure that the radiation parameters in the samples could be expressed in physical radiometric units. This calibration was done in two stages. This is energy and efficiency calibrations and efficiency calibrations. The energy calibration converts channel numbers to γ-ray energy in Mev. This was done by placing different gamma sources of known energy on the detector at a distance of 7cm from it. After a preset counting time of 36,000s, the channels of the various photopeaks corresponding to the gamma energies were identified.

The efficiency calibration was done to determine the gamma ray counting efficiencies over energy range of 0.662 – 2.615 Mev. This was done by converting the count per seconds under the photopeaks to activity concentration Bq/kg of certified reference standard samples. The certified reference standard samples have activity concentrations of 7.24 Bq/kg for 137Cs (0.662 Mev), 510.00 Bq/kg for 40K (1.460 Mev), 631.00 Bq/kg for 226Ra (1760 Mev of 214Bi) and 11.00 Bq/kg for 232Th (2.615 Mev of 208 Tl). Efficiencies at different gamma energy peaks are represented in Table 1. The reference standard sources were counted for 10 hours (36,000s) after which the counting efficiencies of the different gamma energies were determined.

<table>
<thead>
<tr>
<th>Standard sources</th>
<th>Energy(MeV)</th>
<th>Efficiency(%)</th>
<th>Channel number</th>
</tr>
</thead>
<tbody>
<tr>
<td>137Cs</td>
<td>0.662</td>
<td>5.57</td>
<td>40</td>
</tr>
<tr>
<td>40K</td>
<td>1.460</td>
<td>1.87</td>
<td>72</td>
</tr>
<tr>
<td>226Ra</td>
<td>1.760</td>
<td>1.67</td>
<td>84</td>
</tr>
<tr>
<td>232Th</td>
<td>2.615</td>
<td>1.35</td>
<td>125</td>
</tr>
</tbody>
</table>

III. RESULTS AND DISCUSSION

3.1 The activity concentration

The activity concentration of the samples could be computed from the count rate (A_{net}) under the photopeak of each of the three primordial radionuclides using equation 1 [7, 9].

$$\varepsilon \gamma = \frac{A_{net}}{A_{s}Y_{s}M_{s}t} \tag{1}$$

Where $\varepsilon \gamma$ = the efficiency of the detector at a particular γ – energy

A_{net} = count rate under the photopeak of the three primordial radionuclides,

A_{s} = activity concentration in Bq/kg-1

Y_{s} = the yield of the gamma ray at a particular energy,

M_{s} = the mass of the samples (0.2kg)

t = the counting time in seconds.

The values of the mean activity concentrations for the three local government areas investigated are in Table 2.
Table 2: The mean activity concentration of radionuclides.

<table>
<thead>
<tr>
<th>Sample location</th>
<th>40K (Bq Kg$^{-1}$)</th>
<th>226Ra (Bq Kg$^{-1}$)</th>
<th>232Th (Bq Kg$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OWN</td>
<td>165.5±10</td>
<td>19.4±1.8</td>
<td>17.9±3.3</td>
</tr>
<tr>
<td>OWW</td>
<td>163.5±8.3</td>
<td>19.7±1.9</td>
<td>19.6±3.4</td>
</tr>
<tr>
<td>OWM</td>
<td>172.5±13.1</td>
<td>20.1±2.0</td>
<td>16.8±3.2</td>
</tr>
<tr>
<td>Mean</td>
<td>167.2±10.5</td>
<td>19.7±1.9</td>
<td>18.1±3.3</td>
</tr>
</tbody>
</table>

3.2 Radium equivalent activity (Ra_{eq})

The radium equivalent activity (Ra_{eq}) was computed in this work in order to assess the gamma radiation risk to human being. This compares the specific activity of the samples containing different amounts of 40K, 226Ra and 232Th. It is defined as an estimation of radiation 370 Bq Kg$^{-1}$ of 226Ra, 259 Bq Kg$^{-1}$ of 232Th and 4810 Bq Kg$^{-1}$ of 40K that produces the same gamma ray dose rate. This index is determined using the equation 2 [10, 11].

$$Ra_{eq} = 0.077C_K + C_{Ra} + 1.43C_{Th} \tag{2}$$

Where C_K, C_{Ra} and C_{Th} are the activity concentrations of 40K, 226Ra and 232Th in Bq Kg$^{-1}$ respectively. The values of the radium equivalent activity obtained in this research are in Table 3 while the chat is shown in figure 1.

3.3 Absorbed dose rate (D) and annual effective dose equivalent (E)

The absorbed dose rate in air (D) in nGy h$^{-1}$ at about 1 meter above the ground level due to the activity concentration of 40K, 226Ra and 232Th were computed using equation 3 [11, 12].

$$D(nGy h^{-1}) = 0.042C_K + 0.429C_{Ra} + 0.666C_{Th} \tag{3}$$

Where C_K, C_{Ra} and C_{Th} are the activity concentrations of 40K, 226Ra and 232Th in Bq Kg$^{-1}$ respectively. The values obtained are presented in Table 3 and the plot for the three LGAs investigated is shown in figure 1.

The annual effective dose equivalent due to the absorbed dose rate in air was computed using 8760 hours for one year, an indoor occupancy factor of 0.8 and the conversion coefficient of 0.7Sv Gy$^{-1}$ using equation 4. [11, 13].

$$E(Sv y^{-1}) = D(nGy h^{-1}) \times 8760 \times 0.8 \times 0.7Sv Gy^{-1} \times 10^{-6} \tag{4}$$

The values of the effective dose equivalent (E) are presented in Table 3 and the plot is shown in figure 1.
Figure 1: The distribution of the mean values of radium equivalent activity (Ra_{eq}), absorbed dose rate (D), annual effective dose (E) in the three LGAs that made up Owerri. (Note that the absorbed dose rate (D) in the graph is a multiple of 10^{-9} and annual effective dose equivalent (E) is a multiple of 10^{-6}.)

3.4 External and internal health hazard indices (H_{ex}) and(H_{in})

The concept of the hazard indices was used to assess the potential radiological risk associated with human. Gamma radiation emitted by the radionuclides concern is an estimate of external hazard index that is determined using equation 5 [11].

$$H_{ex} = \frac{C_K}{4810} + \frac{C_{Ra}}{185} + \frac{C_{Th}}{289} \leq 1$$ \hspace{1cm} (5)

Radon (222Rn) is a gaseous product of the decay of Radium (226Ra). It is short-lived and constitute a major source of internal radiation exposure [14, 15]. The internal exposure of living cells to radon and its daughter products is referred to as internal hazard index (H_{in}) and was estimated using equation 6 [11]

$$H_{in} = \frac{C_K}{4810} + \frac{C_{Ra}}{185} + \frac{C_{Th}}{289} \leq 1$$ \hspace{1cm} (6)

Where C_K, C_{Ra} and C_{Th} are the activity concentrations of 40K, 226Ra and 232Th in Bq $\, kg^{-1}$ respectively in both equations 5 and 6. The values of external and internal health hazard indices are recorded in Table 3 and the plot of their comparison to the world standard value is shown in figure 2.

Table 3: The values of Ra_{eq}, D, E, H_{ex} and H_{in} compared to the world standard values

<table>
<thead>
<tr>
<th>Sample location</th>
<th>Number of samples</th>
<th>Ra_{eq} (Bq/kg)</th>
<th>D (10^{-9} Gy/h)</th>
<th>E (10^{-6} Svy-1)</th>
<th>H_{ex}</th>
<th>H_{in}</th>
</tr>
</thead>
<tbody>
<tr>
<td>OWN</td>
<td>10</td>
<td>57.7</td>
<td>26.7</td>
<td>130.98</td>
<td>0.16</td>
<td>0.21</td>
</tr>
<tr>
<td>OWW</td>
<td>10</td>
<td>60.3</td>
<td>27.8</td>
<td>136.38</td>
<td>0.17</td>
<td>0.22</td>
</tr>
<tr>
<td>OWM</td>
<td>10</td>
<td>57.4</td>
<td>26.7</td>
<td>130.98</td>
<td>0.15</td>
<td>0.20</td>
</tr>
<tr>
<td>Mean Values</td>
<td></td>
<td>58.5</td>
<td>27.1</td>
<td>132.78</td>
<td>0.16</td>
<td>0.21</td>
</tr>
<tr>
<td>World standard Values</td>
<td></td>
<td>370</td>
<td>60</td>
<td>450.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Figure 2. The distribution of the internal and external hazard indices compared to their world standard value.

IV. CONCLUSION

The three primordial radionuclides of 40K, 226Ra and 232Th have been measured and detected in all the samples investigated from the three local government areas that make up Owerri city using Gamma ray spectrometer of $NaCl(Tl)$ detector. These were used to compute the average terrestrial gamma radiation dose rate, annual effective dose equivalents and the health hazard indices using standard analytical methods. Results showed that the values of absorbed dose rate (D) and annual effective dose equivalent (E) are $27.1 \, mGy \, h^{-1}$ and $132.78 \, mSvy^{-1}$ respectively. The mean value of radium equivalent activity is $58.5 \, Bq \, Kg^{-1}$, while the values of external and internal health hazard indices are 0.16 and 0.21 respectively. All these values obtained when compared with the various United Nations Scientific committee on the Effect of Atomic Radiation (UNSCEAR)
permissible values, were found to be below the standard for such environment. This shows that the risk of radiological health hazard to Owerri city is considerably low. The values obtained could represent a baseline study for natural radiation and the health hazard indices for future references and research in the city.

REFERENCES

