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------------------------------------------------------------Abstract---------------------------------------------------- 
Over the last decades parallel-distributed computing becomes most popular than traditional centralized 

computing. In distributed computing performance up-gradation is achieved by distributing workloads across the 

participating nodes. One of the most important factors for improving the performance of this type of system is to 

reduce average and standard deviation of job response time. Runtime insertion of new tasks of various sizes to 

different nodes is one of the main reasons of Load unbalancing. Among the several latest concepts of Parallel-

Distributed Processing CPU-GPU Utilization is focused here. How the ideal portion of the CPU can be utilized 

for GPU process and visa-versa. This paper also introduces the heterogeneous computing work flow integration 
focused on CPU-GPU. The purposed system exploits the coarse-grain warp level parallelism.  It is also 

elaborated here that by using which architectures and frameworks developers are racing in the field of 

heterogeneous computing. 

Index Terms: Heterogeneous Computing, Coarse-Grained warp level parallelism, standard deviation of job 

response time 
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I. Introduction 

The goal of proper work utilization in emerge 

techniques of multi core processing is one of the 

most important aspects from the massively parallel 

systems (MMP). Emerging parallel-distributed  

technology has picked its highest progress in 

processing power, data storage capacity, circuit 

integration scale etc. in last several few years but 

still it doesn’t satisfy the increasing need of 

advanced multi core processors. As we have 

chosen participation of CPU ideal source in the 

activities of GPU, for this GPU computing has 

emerged in recent years as a viable execution 
platform for throughput oriented applications or 

codes at multiple granularities by using several 

architecture developed by different GMA 

manufacturers. 

In general GPUs started its era as 

independent units for code execution but after that 

initialization phase of graphics unit several 

developments has done for CPU-GPU integration. 

Various manufacturers have developed thread level 

parallelism for their graphics Accelerators. For 

emerging a powerful computing paradigm General-

Purpose computing on Graphics Processing Units 
(GPGPU) has been enhanced to manage hundreds 

of processing cores [6][13]. It helps to enhance  

 
 

performance of operations by mostly focusing on 

Single instruction multiple data (SIMT) models 

which has concept very similar to single instruction 

multiple data (SIMD) architecture of Flynn’s 

classification. For this NVIDIA has mentioned 

architecture named unified graphics computing 

architecture (UGCA), here on the basis of that 

concept, and by the researches done on recent 
decades we have proposed architecture of that 

concept with entire work flow. 

 

II. Related Work 
With the concept of general purpose 

graphics units, manufacturer of GMA like 

NVIDIA, Intel, ARM and AMD etc. has developed 

specified architecture for this integration. For 

example, AMD/ATi GPU developed Brook+ for 
general purpose programming and, NVIDIA has 

developed Compute Unified Device Architecture 

(CUDA) which provides greater programming 

environment for general purpose graphics devices. 

 

GPGPU programming paradigm of CUDA 

increases performance, but still it doesn’t satisfies 

extreme level scheduling of tasks allocated to GPU 

[12]. For establishing such kind of situation a better 
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way is to exploit a technique which utilizes ideal 

GPU recourses which will reduce the complete 

runtime of the it’s processing. For upgrading their 

source utilization process recently other developers 

also released some integrated solutions for above 

mentioned system. Some most popular of them are 
Intel’s Sandy Bridge, AMD’s Fusion APUs, and 

ARM’s MALI. 

 

This paper proposes Heterogeneous 

environment for CPU-GPU integration. CPU-GPU 

Chip integration offers several advantages than 

traditional systems like, reducing communication 

cost, proper memory resource utilization of both 

because rather than using separate memory space it 

also focuses on the shared memory mechanism, 

warp level parallelism for faster and efficient 

performance[5] [7]. Warps can be defined as the 
groups of threads; most of the warp structures 

include 32 threads into one warp structure [7]. 

Researches on warp mechanism for threading also 

noticed that for efficient control flow execution on 

GPUs via dynamic warp formation and large warp 

micro architectures, in which a common program 

counter is used for execution of all the threads of a 

single warp together [5]. The scheduler selects 

warps which is ready to execute, issues the next 

instruction to the active threads of that warp. 

  

III. Design 
As we have discussed CUDA is used to 

establish virtual kernel between distinguished 

sources of CPU-GPU it is also mentioned in given 

architecture, these kernels will use preloaded data 

after decomposition from the memory repositories 

like buffer memory or temporary cache memory. 

The key design problem is caused by the fact that 

the computation results of the CPU side are stored 
into the main memory that is different from the 

device memory. To overcome this problem, in our 

architecture preserve two different memory 

addresses in a pointer variable at a time. An 

efficient design architecture of the proposed UGCA 

architecture is shown in figure1.  

 

Mainly UGCA contains two phases in its 

workflow. First phase of process includes task 

decomposition module and mapping of all 

decomposed tasks also it manages the distribution 

ratio to the kernel configuration information. And 
second phase is designed to translate the Parallel 

Thread Execution (PTX) code into the LLVM 

code. Here, PTX is pseudo assembly language code 

used in CUDA. As shown in fig. 1 second 

procedure is designed to translate PTX code into 

the LLVM intermediate representation. On GPU 

device, runtime system passes the PTX code 

through the CUDA device driver, which means that 

the GPU executes the kernel in the original manner 

using the PTX-JIT compilation. 

 

 
Figure 1.Unified Graphics Computing Architecture 

 

UGCA uses PTX translator provided for 

converting PTX instructions into LLVM instruction 

register. LLVM instruction register is used for a 
kernel context. Proposed system has the advantage 

that initialization of GPU, memory checking and, 

PTX to LLVM compilation are performed in 

parallel.   

 

IV. Workflow 
In the first phase of UGCA architecture, 

Nvcc compiler translates code written in CUDA, 

into PTX, then graphics driver indicates CUDA 
compiler which translates PTX to LLVM which 

can be run on processing core. The most important 

functionality of Workload distribution module is it 

generates two additional execution configurations 

for each (CPU and GPU). Then for performing 

further operation this module delivers the generated 

execution configuration, to the CPU and GPU 

loaders. 

 

As shown in figure 1 top module involves 

all the configuration information of both CPU and 

GPU kernels and basic PTX assembly code which 
will further converted into LLVM code for 

intermediate representation. The input of workload 

distribution module is the kernel configuration 

information and the output specifies two different 

portions of the kernel space, here dimension of grid 

is used for  

workload distribution module. Proposed 

work distribution can split the kernel according to 

the granularity of thread block. It also determines 

the amount of the thread blocks to be detached 

from the grid considering the dimension of the grid 
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and workload distribution ratio. We are focusing on 

coarse warp level parallelism, so in this condition 

sometimes number of threads doesn’t follow 

preferred bock size, bound tests should be inserted 

to kernel [5]. Otherwise threads may access 

memory out of index. For declaring block 
boundries some preprogrammed semantics are 

available in cuda library.  

 

_global_ void kernel(int n, int* x ) 

{ 

   int idx =  threadidx.x  +  blockidx.x*blockdim.x; 

   if(i < n) 

   { 

      //  core programming  

    } 

 } 

 
How many block should be covered in a 

block can be declared by inbuilt schematics of 

CUDA library like threadidx and blockidx. In 

above mentioned code, threadidx.x indicates the 

number associated with each thread in a block. 

Block size of thread can be mapped with number of 

threads multiples of 32 like 192, 256 etc. Similarly 

block size can be declared for two dimension, three 

dimension and so on. Convention mentioned above 

is very useful for two dimensional matrices [9]. 

Here blockidx.x refers to the label associated with a 
block grid. The blockidx.x is similar to the thread 

index except it refers to the  number associated 

with the block. Lets take an example for 

elaborating the concept of blockdim.x, suppose we 

want to load an array of 10 values in to a kernel 

using two blocks, each one having size of 5 threads 

in each. A major problem to do this kind of 

operation is that, our thread index may only goes 

for 0 to 4 as mentioned threads in one block. Here 

to overcome this problem we can use  a third 

parameter given in CUDA stated as threaddix.x. 

This holds the size of the block, like in our case 
threadidx.x = 5.  

 

A program written for CUDA application 

should assign memory spaces in the device 

memory of the graphics hardware. Then their 

memory addresses are used for the input and output 

data. In this UGCA model, data can be copied 

between the host memory and the dedicated 

memory on the device. For this, the host system 

should preserve pointer addresses pointing to the 

locations in the device memory. The key design 
problem is caused by the fact that the  

Computation results of the CPU side are stored into 

the main memory that is different from the device 

memory.  

 

 

 

 

 

V. Comparison 
As we have discussed for above 

architecture, CUDA has been provided a massive 
parallelism for GPU as well as non GPU 

programming also [1]. Now let us compare with 

other parallel programming environment according 

to their performance.  CUDA environment is only 

available to NVIDIA GPU device, whereas the 

Open CL standard may be implemented   to run on 

any vendor’s hardware, such as traditional CPUs, 

and GPUs [2] [3]. One of the most effective 

advantages of OpenCL compare to CUDA is its 

programming portability. But while comparison is 

subject of matter then CUDA gives more speedups 
by using its thread based warp level parallelism [4]. 

Because of the multi-vendor compatibility of 

OpenCL makes enough difference between both of 

these that pose significant challenges towards 

realizing a robust CUDA to OpenCL source to 

source translation [2]. Figure 2, shows comparison 

of both CUDA and OpenCL for execution of 

various algorithms like fast Fourier transformation, 

double-precision matrix multiplication [9], 

molecular dynamics, and simple 3D graphics 

programs.  

 

 

Figure 2. GFLOPS required to execute different 

algorithms on CUDA and OpenCL 

 

Performance of various environments 

according to required GFLOPS is analyzed by 

results. NVIDIA Tesla C2050 GPU computing 

processors perform around 515 GFLOPS in double 
precision calculations, and the AMD FireStream 

9270 peaks at 240 GFLOPS [14][19]. In single 

precision performance, Nvidia Tesla C2050 

computingprocessors perform around 1.03 

TFLOPS and the AMD FireStream  9270 cards 

peak at 1.2 TFLOPS. 

 

VI. Conclusion 
The paper has introduced architecture of 

the concept which is widely adopted for coarse 

grained warp level parallelism and also going to be 

adopted as the advanced concept of warp level 

parallelism. For example Success of Proposed 
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UGCA framework can be exampled with NVIDIA 

GeForce 9400 GT device. After the drastic success 

of mentioned graphics device. This architecture is 

going to be focused for more future enhancements. 

We believe the cooperative heterogeneous 

computing can be utilized in heterogeneous multi-
core processors which are expected to include even 

more GPU cores as well as CPU cores.  

As future work, we will first develop a dynamic 

control scheme on deciding the workload 

distribution ratio, warp scheduling, also plan to 

design more effective thread block distribution 

technique considering data access patterns and 

thread divergence technique. 

 

References 
 [1] 

 

Ziming Zhong, Rychkov, V., Lastovetsky, A. 

"Data Partitioning on Heterogeneous Multicore 

and Multi-GPU Systems Using Functional 

Performance Models of Data-Parallel 

Applications", Cluster Computing (CLUSTER), 

2012 IEEE International Conference on , vol., no., 

pp.191-199, 24-28 Sept. 

[2] Sathre, P.; Gardner, M.; Wu-chun Feng; "Lost in 

Translation: Challenges in Automating CUDA-to-

OpenCL Translation", Parallel Processing 

Workshops (ICPPW), 2012 41st International 
Conference on , vol., no., pp.89-96,10-

13,Sept.,2012 

[3] Scogland, T.R.W., Rountree B., Wu-chun Feng,  

de Supinski, B.R.; "Heterogeneous Task 

Scheduling for Accelerated OpenMP", Parallel & 

Distributed Processing Symposium (IPDPS), 2012 

IEEE 26th International , vol., no., pp.144-155, 

21-25May2012. 

[4] Okuyama, T., Ino, F., Hagihara, K., "A Task 

Parallel Algorithm for Computing the Costs of 

All-Pairs Shortest Paths on the CUDA-Compatible 
GPU", Parallel and Distributed Processing with 

Applications, 2008. ISPA '08. International 

Symposium, vol., no., pp.284-291 

[5] Goli, M., Garba, M.T., GonzalezVélez, H., 
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