
The International Journal of Engineering And Science (IJES)

||Volume|| 2 ||Issue|| 01||Pages|| 250-253 ||2013||
ISSN: 2319 – 1813 ISBN: 2319 – 1805

www.theijes.com The IJES Page 250

Advanced Trends of Heterogeneous Computing with CPU-GPU

Integration: Comparative Study

Ishan Rajani
1
, G Nanda Gopal

2

1. PG student at Department of Computer Engineering, Noble Group of Institution, Gujarat, India

2. Asst. Prof. at Department of Computer Engineering, Noble Group of Institution, Gujarat, India

--Abstract--
Over the last decades parallel-distributed computing becomes most popular than traditional centralized

computing. In distributed computing performance up-gradation is achieved by distributing workloads across the

participating nodes. One of the most important factors for improving the performance of this type of system is to

reduce average and standard deviation of job response time. Runtime insertion of new tasks of various sizes to

different nodes is one of the main reasons of Load unbalancing. Among the several latest concepts of Parallel-

Distributed Processing CPU-GPU Utilization is focused here. How the ideal portion of the CPU can be utilized

for GPU process and visa-versa. This paper also introduces the heterogeneous computing work flow integration
focused on CPU-GPU. The purposed system exploits the coarse-grain warp level parallelism. It is also

elaborated here that by using which architectures and frameworks developers are racing in the field of

heterogeneous computing.

Index Terms: Heterogeneous Computing, Coarse-Grained warp level parallelism, standard deviation of job

response time

Date of Submission: 28
th
 December, 2012 Date of Publication: Date 20

th
 January 2013

I. Introduction

The goal of proper work utilization in emerge

techniques of multi core processing is one of the

most important aspects from the massively parallel

systems (MMP). Emerging parallel-distributed

technology has picked its highest progress in

processing power, data storage capacity, circuit

integration scale etc. in last several few years but

still it doesn’t satisfy the increasing need of

advanced multi core processors. As we have

chosen participation of CPU ideal source in the

activities of GPU, for this GPU computing has

emerged in recent years as a viable execution
platform for throughput oriented applications or

codes at multiple granularities by using several

architecture developed by different GMA

manufacturers.

In general GPUs started its era as

independent units for code execution but after that

initialization phase of graphics unit several

developments has done for CPU-GPU integration.

Various manufacturers have developed thread level

parallelism for their graphics Accelerators. For

emerging a powerful computing paradigm General-

Purpose computing on Graphics Processing Units
(GPGPU) has been enhanced to manage hundreds

of processing cores [6][13]. It helps to enhance

performance of operations by mostly focusing on

Single instruction multiple data (SIMT) models

which has concept very similar to single instruction

multiple data (SIMD) architecture of Flynn’s

classification. For this NVIDIA has mentioned

architecture named unified graphics computing

architecture (UGCA), here on the basis of that

concept, and by the researches done on recent
decades we have proposed architecture of that

concept with entire work flow.

II. Related Work
With the concept of general purpose

graphics units, manufacturer of GMA like

NVIDIA, Intel, ARM and AMD etc. has developed

specified architecture for this integration. For

example, AMD/ATi GPU developed Brook+ for
general purpose programming and, NVIDIA has

developed Compute Unified Device Architecture

(CUDA) which provides greater programming

environment for general purpose graphics devices.

GPGPU programming paradigm of CUDA

increases performance, but still it doesn’t satisfies

extreme level scheduling of tasks allocated to GPU

[12]. For establishing such kind of situation a better

Advanced Trends of Heterogeneous Computing with CPU-GPU Integration: Comparative Study

www.theijes.com The IJES Page 251

way is to exploit a technique which utilizes ideal

GPU recourses which will reduce the complete

runtime of the it’s processing. For upgrading their

source utilization process recently other developers

also released some integrated solutions for above

mentioned system. Some most popular of them are
Intel’s Sandy Bridge, AMD’s Fusion APUs, and

ARM’s MALI.

This paper proposes Heterogeneous

environment for CPU-GPU integration. CPU-GPU

Chip integration offers several advantages than

traditional systems like, reducing communication

cost, proper memory resource utilization of both

because rather than using separate memory space it

also focuses on the shared memory mechanism,

warp level parallelism for faster and efficient

performance[5] [7]. Warps can be defined as the
groups of threads; most of the warp structures

include 32 threads into one warp structure [7].

Researches on warp mechanism for threading also

noticed that for efficient control flow execution on

GPUs via dynamic warp formation and large warp

micro architectures, in which a common program

counter is used for execution of all the threads of a

single warp together [5]. The scheduler selects

warps which is ready to execute, issues the next

instruction to the active threads of that warp.

III. Design
As we have discussed CUDA is used to

establish virtual kernel between distinguished

sources of CPU-GPU it is also mentioned in given

architecture, these kernels will use preloaded data

after decomposition from the memory repositories

like buffer memory or temporary cache memory.

The key design problem is caused by the fact that

the computation results of the CPU side are stored
into the main memory that is different from the

device memory. To overcome this problem, in our

architecture preserve two different memory

addresses in a pointer variable at a time. An

efficient design architecture of the proposed UGCA

architecture is shown in figure1.

Mainly UGCA contains two phases in its

workflow. First phase of process includes task

decomposition module and mapping of all

decomposed tasks also it manages the distribution

ratio to the kernel configuration information. And
second phase is designed to translate the Parallel

Thread Execution (PTX) code into the LLVM

code. Here, PTX is pseudo assembly language code

used in CUDA. As shown in fig. 1 second

procedure is designed to translate PTX code into

the LLVM intermediate representation. On GPU

device, runtime system passes the PTX code

through the CUDA device driver, which means that

the GPU executes the kernel in the original manner

using the PTX-JIT compilation.

Figure 1.Unified Graphics Computing Architecture

UGCA uses PTX translator provided for

converting PTX instructions into LLVM instruction

register. LLVM instruction register is used for a
kernel context. Proposed system has the advantage

that initialization of GPU, memory checking and,

PTX to LLVM compilation are performed in

parallel.

IV. Workflow
In the first phase of UGCA architecture,

Nvcc compiler translates code written in CUDA,

into PTX, then graphics driver indicates CUDA
compiler which translates PTX to LLVM which

can be run on processing core. The most important

functionality of Workload distribution module is it

generates two additional execution configurations

for each (CPU and GPU). Then for performing

further operation this module delivers the generated

execution configuration, to the CPU and GPU

loaders.

As shown in figure 1 top module involves

all the configuration information of both CPU and

GPU kernels and basic PTX assembly code which
will further converted into LLVM code for

intermediate representation. The input of workload

distribution module is the kernel configuration

information and the output specifies two different

portions of the kernel space, here dimension of grid

is used for

workload distribution module. Proposed

work distribution can split the kernel according to

the granularity of thread block. It also determines

the amount of the thread blocks to be detached

from the grid considering the dimension of the grid

Advanced Trends of Heterogeneous Computing with CPU-GPU Integration: Comparative Study

www.theijes.com The IJES Page 252

and workload distribution ratio. We are focusing on

coarse warp level parallelism, so in this condition

sometimes number of threads doesn’t follow

preferred bock size, bound tests should be inserted

to kernel [5]. Otherwise threads may access

memory out of index. For declaring block
boundries some preprogrammed semantics are

available in cuda library.

global void kernel(int n, int* x)

{

 int idx = threadidx.x + blockidx.x*blockdim.x;

 if(i < n)

 {

 // core programming

 }

 }

How many block should be covered in a

block can be declared by inbuilt schematics of

CUDA library like threadidx and blockidx. In

above mentioned code, threadidx.x indicates the

number associated with each thread in a block.

Block size of thread can be mapped with number of

threads multiples of 32 like 192, 256 etc. Similarly

block size can be declared for two dimension, three

dimension and so on. Convention mentioned above

is very useful for two dimensional matrices [9].

Here blockidx.x refers to the label associated with a
block grid. The blockidx.x is similar to the thread

index except it refers to the number associated

with the block. Lets take an example for

elaborating the concept of blockdim.x, suppose we

want to load an array of 10 values in to a kernel

using two blocks, each one having size of 5 threads

in each. A major problem to do this kind of

operation is that, our thread index may only goes

for 0 to 4 as mentioned threads in one block. Here

to overcome this problem we can use a third

parameter given in CUDA stated as threaddix.x.

This holds the size of the block, like in our case
threadidx.x = 5.

A program written for CUDA application

should assign memory spaces in the device

memory of the graphics hardware. Then their

memory addresses are used for the input and output

data. In this UGCA model, data can be copied

between the host memory and the dedicated

memory on the device. For this, the host system

should preserve pointer addresses pointing to the

locations in the device memory. The key design
problem is caused by the fact that the

Computation results of the CPU side are stored into

the main memory that is different from the device

memory.

V. Comparison
As we have discussed for above

architecture, CUDA has been provided a massive
parallelism for GPU as well as non GPU

programming also [1]. Now let us compare with

other parallel programming environment according

to their performance. CUDA environment is only

available to NVIDIA GPU device, whereas the

Open CL standard may be implemented to run on

any vendor’s hardware, such as traditional CPUs,

and GPUs [2] [3]. One of the most effective

advantages of OpenCL compare to CUDA is its

programming portability. But while comparison is

subject of matter then CUDA gives more speedups
by using its thread based warp level parallelism [4].

Because of the multi-vendor compatibility of

OpenCL makes enough difference between both of

these that pose significant challenges towards

realizing a robust CUDA to OpenCL source to

source translation [2]. Figure 2, shows comparison

of both CUDA and OpenCL for execution of

various algorithms like fast Fourier transformation,

double-precision matrix multiplication [9],

molecular dynamics, and simple 3D graphics

programs.

Figure 2. GFLOPS required to execute different

algorithms on CUDA and OpenCL

Performance of various environments

according to required GFLOPS is analyzed by

results. NVIDIA Tesla C2050 GPU computing

processors perform around 515 GFLOPS in double
precision calculations, and the AMD FireStream

9270 peaks at 240 GFLOPS [14][19]. In single

precision performance, Nvidia Tesla C2050

computingprocessors perform around 1.03

TFLOPS and the AMD FireStream 9270 cards

peak at 1.2 TFLOPS.

VI. Conclusion
The paper has introduced architecture of

the concept which is widely adopted for coarse

grained warp level parallelism and also going to be

adopted as the advanced concept of warp level

parallelism. For example Success of Proposed

Advanced Trends of Heterogeneous Computing with CPU-GPU Integration: Comparative Study

www.theijes.com The IJES Page 253

UGCA framework can be exampled with NVIDIA

GeForce 9400 GT device. After the drastic success

of mentioned graphics device. This architecture is

going to be focused for more future enhancements.

We believe the cooperative heterogeneous

computing can be utilized in heterogeneous multi-
core processors which are expected to include even

more GPU cores as well as CPU cores.

As future work, we will first develop a dynamic

control scheme on deciding the workload

distribution ratio, warp scheduling, also plan to

design more effective thread block distribution

technique considering data access patterns and

thread divergence technique.

References
 [1]

Ziming Zhong, Rychkov, V., Lastovetsky, A.

"Data Partitioning on Heterogeneous Multicore

and Multi-GPU Systems Using Functional

Performance Models of Data-Parallel

Applications", Cluster Computing (CLUSTER),

2012 IEEE International Conference on , vol., no.,

pp.191-199, 24-28 Sept.

[2] Sathre, P.; Gardner, M.; Wu-chun Feng; "Lost in

Translation: Challenges in Automating CUDA-to-

OpenCL Translation", Parallel Processing

Workshops (ICPPW), 2012 41st International
Conference on , vol., no., pp.89-96,10-

13,Sept.,2012

[3] Scogland, T.R.W., Rountree B., Wu-chun Feng,

de Supinski, B.R.; "Heterogeneous Task

Scheduling for Accelerated OpenMP", Parallel &

Distributed Processing Symposium (IPDPS), 2012

IEEE 26th International , vol., no., pp.144-155,

21-25May2012.

[4] Okuyama, T., Ino, F., Hagihara, K., "A Task

Parallel Algorithm for Computing the Costs of

All-Pairs Shortest Paths on the CUDA-Compatible
GPU", Parallel and Distributed Processing with

Applications, 2008. ISPA '08. International

Symposium, vol., no., pp.284-291

[5] Goli, M., Garba, M.T., GonzalezVélez, H.,

 "Streaming Dynamic Coarse-Grained CPU/GPU

Workloads with Heterogeneous Pipelines in

FastFlow" High Performance Computing and

Communication & 2012 IEEE 9th International

Conference on Embedded Software and Systems

(HPCC-ICESS), 2012 IEEE 14th International

Conference on , vol., no., pp.445-452, 25-27 June

2012
[6] Manish Arora, “The architecture and Evolution of

CPU-GPU Systems for General Purpose

Computing ” , By University of California, San

Diago

[7] Veynu Narasiman, Michael Shebanow, Chang Joo

Lee, “ Improving GPU Performance via Large

Warps and Two-Level Warp Scheduling ”, The

University of Texas at Austin

[8] Rafiqul Zaman Khan, Md Firoj Ali: “A

comparative study on parallel programming tools

in parallel distributed computing system: MPI and

PVM”, Aligarh Muslim University

[9] Ali Pinar and Cevdet Aykanat; “Sparse Matrix

Decomposition with Optimal LoadBalancing ”,

TR06533 Bilkent, Ankara, Turkey

[10] NVIDIA, Nvidia cuda sdks.
[11] N. Bell and M. Garland. Cusp; “Genetic parallel

algorithms for sparse matrix and graph

conputations”, 2010

[12] J. Nickolls and W. Dally. The gpu computing era.

Micro, IEEE, 30(2):56-69, april 2010

[13] S. Huang, S. Xiao, W. Feng; “On the Energy

Efficiency of Graphics Processing Units for

Scientific Computing”

[14] Andrew J. Page: “Adaptive Scheduling in

Heterogeneous Distributed Computing Systems,

National University of Ireland, Maynooth

[15] Getting Started with cuda http://blogs.nvidia.com/
[16] Nvidia GeForce Graphics Card,

http://www.nvidia.com/object/geforce_family.html

[17] Nvidia Tesla GPGPU system,

http://www.rzg.mpg.de/computing

[18] The Supercomputing Blog

http://supercomputingblog.com/cuda/cuda-tutorial-

1-getting-started/

[19] Articles on advanced computing

 http://www.slcentral.com/articles/

